最小二乘法多项式曲线拟合及其python实现

最小二乘法多项式曲线拟合及其python实现

    • 多项式曲线拟合问题描述
    • 最小二乘法
    • 针对overfitting,加入正则项
    • python实现
    • 运行结果

多项式曲线拟合问题描述

在这里插入图片描述问题描述:给定一些数据点,用一个多项式尽可能好的拟合出这些点排布的轨迹,并给出解析解
判断拟合的好坏常用的误差衡量方法是均方根误差,要求均方根误差先要求平方和误差:
在这里插入图片描述然后计算均方根误差:
在这里插入图片描述多项式拟合问题本质是一个优化问题,目标函数是使RMS误差最小。
本文关注于最小二乘法优化。

最小二乘法

在这里插入图片描述最小二乘法推导:RMS误差与E(W)成正比,E(W)最优等价于RMS最优
E(W):
在这里插入图片描述
对E(W)求导:
在这里插入图片描述
令导数=0:
在这里插入图片描述
通过给定X和T,可以直接求得W,W就是多项式拟合中的系数矩阵。

针对overfitting,加入正则项

在这里插入图片描述求导:
在这里插入图片描述
求出W:
在这里插入图片描述

python实现

import numpy as np
import math
import matplotlib.pyplot as plt
SAMPLE_NUM=200#要生成的sample个数
M=9#多项式阶数#产生带有高斯噪声的信号
mid, sigma = 0, 0.3 # 设置均值和方差
noise = np.random.normal(mid, sigma, SAMPLE_NUM).reshape(SAMPLE_NUM,1) #生成SAMPLE_NUM个数据#产生SAMPLE_NUM个序号(范围是2pi)
x = np.arange(0, SAMPLE_NUM).reshape(SAMPLE_NUM,1)/(SAMPLE_NUM-1)*(2*math.pi)#generate y and y_noise, and both y's and y_noise's shape is (SAMPLE_NUM*1)
y=np.sin(x)
y_noise=np.sin(x)+noise#绿色曲线显示x - y,散点显示x - y_noise
plt.title("")
plt.plot(x,y,'g',lw=4.0)
plt.plot(x,y_noise,'bo')#generate Matrix X which has M order
X=x
for i in range(2,M+1):X = np.column_stack((X, pow(x,i)))#add 1 on the first column of X, now X's shape is (SAMPLE_NUM*(M+1))
X = np.insert(X,0,[1],1)
#print(X)#calculate W, W's shape is ((M+1)*1)#
#W=np.linalg.inv((X.T.dot(X))).dot(X.T).dot(y_noise)#have no regularization
W=np.linalg.inv((X.T.dot(X))+np.exp(-8) * np.eye(M+1)).dot(X.T).dot(y_noise)#introduce regularization
y_estimate=X.dot(W)#红色曲线显示x - y_estimate
plt.plot(x,y_estimate,'r',lw=4.0)
plt.show()  

运行结果

绿色曲线 x-y
蓝色散点 x-y_noise
红色曲线 x-y_eatimate

  1. sample number=10,3th
    在这里插入图片描述

  2. sample number=10,9th
    在这里插入图片描述

  3. sample number=15,9th
    在这里插入图片描述

  4. sample number=100,9th
    在这里插入图片描述

  5. sample number=10,9th 加入正则项
    在这里插入图片描述
    加入正则项会有效缓解overfitting问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/253457.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

数值分析——曲线拟合的最小二乘法

文章目录 一、曲线拟合的最小二乘原理1. 超定方程组的最小二乘解解题方法: 2. 直线拟合3. 多项式拟合 一、曲线拟合的最小二乘原理 拟合曲线定义:求近似函数 φ(x), 使之 “最好” 的逼近f(x) ,无需满足插值原则. 这就是曲线拟合问题。 (时间…

最小二乘法的曲线拟合方法在MATLAB中的实现

一、实验内容 已知一组实验数据如下表,求它的拟合曲线。 x(i)12345 f(i)44.5688.5 w(i)21311 二、程序清单与运行结果 M文件代码如下: function Smypolyfit(X,F,W,m,n) % mypolyfit输出通过最小二乘法求得的拟合曲线并绘图验证 % 例如: …

UFS 1-UFS架构简介1

UFS 1-UFS架构简介 1 UFS是什么?1.1 UFS1.2 一般特征1.2.1 Target performance1.2.2 Target host applications1.2.3 Target device types1.2.4 Topology1.2.5 UFS Layering 1.3 Interface Features1.3.1 Three power supplies1.3.2 Signaling as defined by [MIPI-…

最小二乘法线性拟合和2次曲线拟合算法

最近由于项目要求,应用了最小二乘法线性拟合和2次曲线拟合算法,现总结如下: 最小二乘法线性拟合应用已有的采样时间点,再现这些点所描述的线性变化,即求出一个线性方程yaxb(这个算法的主要问题也就是如何用给定的数据…

数值分析实验四 最小二乘法曲线拟合

一、实验目的 1.使用不同的模型对数据进行最小二乘拟合; 2.分析使用不同模型最小二乘法对数据进行拟合的RMSE(均方根误差); 3.根据分析结果求出最合理的拟合模型。 二、实验题目 1.用表1-1中的世界人口统计数值估计1980年的人口,求最佳最小…

最小二乘法的拟合原理

一. 最小二乘法的拟合原理 根据《数学指南》书中的解释: 图2 《数学指南》中对最小二乘法的解释 上面这段话,枯燥且无趣,大家不用厌恶,数学向来这个样子。 现在,我们来慢慢认识上面这段话的意思,这句话的意思是说&a…

最小二乘法拟合直线

曲线拟合中最基本和最常用的是直线拟合。设x和y之间的函数关系为: y=abx 式中有两个待定参数,a代表截距,b代表斜率。对于等精度测量所得到的N组数据(xi,yi),i=1&#xff…

多项式函数曲线拟合——最小二乘法

多项式函数拟合的任务是假设给定数据由M次多项式函数生成,选择最有可能产生这些数据的M次多项式函数,即在M次多项式函数中选择一个对已知数据以及未知数据都有很好预测能力的函数。 最小二乘法(又称最小平方法)是一种数学优化技术…

最小二乘法入门(Matlab直线和曲线拟合)

参考博客:https://blog.csdn.net/wokaowokaowokao12345/article/details/72850143 多的就不多说了,持续脱发中!!! 最小二乘法历史起源之类的:https://baike.baidu.com/item/%E6%9C%80%E5%B0%8F%E4%BA%8C%…

曲线拟合的最小二乘原理

文章目录 1 什么是最小二乘2 最小二乘原理3 最小二乘应用示例4 法方程到底是什么 1 什么是最小二乘 在科学实验的统计方法研究中,往往要从一组实验数据 ( x i , y i ) ( i 0 , 1 , 2 , … , m ) (x_i,y_i)(i0,1,2,…,m) (xi​,yi​)(i0,1,2,…,m) 中寻找自变量 …

最小二乘法曲线拟合原理

最小二乘法曲线拟合原理 一、最小二乘法原理 对于给定的一组数据(xi,yi),假定它满足n次多项式: 为了求取各阶参数的最优解,对于每个xi,通过n次多项式计算的值和yi之间的差值的平方和应该最小&#xff0c…

最小二乘法

1、概述 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差(真实目标对象与拟合目标对象的差)的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数…

最小二乘法多项式曲线拟合原理与实现

概念 最小二乘法多项式曲线拟合,根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线yf(x)的近似曲线y φ(x)。 原理 [原理部分由个人根据互联网上的资料进行总结,希望对大家能有用] 给定数据点pi(xi,yi),其中i1,2,…,m…

最小二乘法曲线拟合以及Matlab实现

最小二乘法曲线拟合以及Matlab实现 在实际工程中,我们常会遇到这种问题:已知一组点的横纵坐标,需要绘制出一条尽可能逼近这些点的曲线(或直线),以进行进一步进行加工或者分析两个变量之间的相互关系。而获…

最小二乘法(least squares)的曲线拟合(curve fitting)

第三十八篇 最小二乘法的曲线拟合 如果我们想得到一个通过大量由实验或者计算机程序获得的数据点的函数,它实际是在寻找一个“最适合”数据的函数,而不是一个完全经过所有点。可以采用各种策略来最小化各个数据点之间的误差和逼近函数。其中最著名的是最小二乘法,它…

曲线拟合——最小二乘法( Ordinary Least Square,OLS)

文章目录 前言一、曲线拟合是什么?二、最小二乘法是什么?三、求解最小二乘法(包含数学推导过程)四、使用步骤1.引入库2.读入数据 总结 前言 随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都…

最小二乘法进行曲线拟合

工作需求,这里记录一下数值插值和数值分析方面的算法,希望和大家一起进步。 曲线拟合的最小二乘定义 求一条曲线,使数据点均在离此曲线的上方或下方不远处,所求的曲线称为拟合曲线, 它既能反映数据的总体分布,又不至于出现局部较大的波动,更能反映被逼…

最小二乘法的曲线拟合

最小二乘法解决的问题:AxC 无解下的最优解 例子1: 一条过原点的直线OA,C是直线外一点,求C在OA上的投影点P 例子1 例子2: 已知三个不在一条直线上的点A,B,C,求一条直线,使A,B,C到直线的距离和最小…

最小二乘法曲线拟合

最小二乘法曲线拟合以及Matlab实现 在实际工程中,我们常会遇到这种问题:已知一组点的横纵坐标,需要绘制出一条尽可能逼近这些点的曲线(或直线),以进行进一步进行加工或者分析两个变量之间的相互关系。而获…

chatgpt赋能python:Python中输出的完整指南

Python中输出的完整指南 在Python中进行编程,输出是至关重要的一部分。它可用于在命令行界面或Web应用程序中显示结果、数据操作等。Python具有各种输出方法,包括print语句,文件和日志记录。在本文中,我们将深入研究Python中输出…