最小二乘法的拟合原理

一. 最小二乘法的拟合原理

根据《数学指南》书中的解释:

图2 《数学指南》中对最小二乘法的解释

上面这段话,枯燥且无趣,大家不用厌恶,数学向来这个样子。

现在,我们来慢慢认识上面这段话的意思,这句话的意思是说,拟合有两个前提:

1. 要有N个不同的点(x1,x2...xN)的测量值(y1,y2,y3..yN) ,说得简单一点,就是要用三坐标在零件上采很多个不同位置的点,如(x1,y1);(x2,y2)...(xN,yN)。

2. 要有目标,就是我们要知道想把这些点拟合成什么样的特征,即所谓的给定函数f(x,a1,a2,...an)。比如说,用三坐标在零件上采了很多个点,我们想把它拟合成圆呢还是拟合成平面?这个我们是在拟合前必须要知道的。

我们继续往下走,假设我们知道我们想把采的点拟合成一个平面,但是这个平面的在空间坐标系中的位置,方向我们并不知道。也就是说要确定这个平面的在三维坐标系中的具体方程,就必须要知道那个给定函数f(x, a1,a2,...an)中的参数a1, a2,...an!

好了,说了半天,我们最终目的就是为了求a1, a2,...an! 而求这些参数的过程就是那个神神叨叨的拟合!

当然了,拟合方法有很多种,只是拟合满足的条件不同。其中有一种只要满足下面的条件,

那么这种拟合方法就是最小二乘法,也就是高斯法。

相信讲到这里,还是有很多小伙伴不太明白,我们再来举个简单的例子说明一下最小二乘法的拟合。

条件1:假设我们在一个平面上采了三个点,分别是u(10,10),v(40,42),w(20,45)

条件2:我们已知想把这三个点拟合成一条直线。这条直线的方程则是 y=ax+b

如果a,b的数值不一样,那么这个直线在空间中的方向和位置也不一样。所以所谓的拟合过程就是求直线方程中的a和b的过程(a,b就是前面提到的参数a1,a2,a3..an)。a,b一旦得出,那么这个直线也就得出来了。见图3:

图3 拟合数据和目标

如何确定a和b呢?根据下面的公式,条件是要求Y方向的差值的平方和最小.

 

即要求下列公式中的R最小。

关于r1, r2, r3见图4.

图4 高斯拟合原理

由图4中不难得出:r1=10a+b-10 r2=20a+b-45 r3=40a+b-42,则有:

求解的过程就是求当R处于最小值时,对应a,b的值。如果真要手工计算这个过程,要用到高等数学中的求偏导,为了不让大家恶心,在这里就不再详细叙述计算过程,把计算过程交给那些苦逼加牛逼的软件工程师们吧。

经过一番计算,我们可以得出 a=1.4009 ;b=-0.3482

则我们可以知道经过所谓的最小二乘法拟合出来的直线是 y=1.401x-0.348. 见下图:

图5 软件中用最小二乘法拟合直线

上面就是对最小二乘法拟合的过程给大家做了一个简单的介绍。现实中所应用的拟合会比上面的例子复杂很多,但是现在软件的算法相对成熟,不管是拟合直线,平面,曲面等,软件都可以快速算出来。具体的我们就不去深究了,但是我们需要知道最小二乘法的特点:

1. 最小二乘法拟合出来的特征是理想的

2. 最小二乘法拟合出来的特征是唯一的

3. 如果没有附加特别的约束(即a1,a2,a3...an之间需要满足某种关系),最小二乘法拟合出来的理想特征,一定在拟合点之间(不是最中间)

4. 最小二乘法具备“民主性”,即倾向于大多数(切比雪夫法是绝对的“中间主义”)。如果和切比雪夫法做比较,下图则可以体现出最小二乘法的所谓的“民主性”。

 

图6 最小二乘法的“民主”性

 

二. 在标准里边哪里必须要用到最小二乘法呢?

相比较ASME而言,ISO更加喜欢最小二乘法,下边我们列出一些案例。

 

1. 最小二乘法应用在尺寸部分

1.1 尺寸要素的默认尺寸

ISO默认独立原则,对尺寸要素的尺寸要求是”两点尺寸”必须合格。如果被测的零件是根轴,要求直径要合格,这时我们就要求两点尺寸必须合格。

什么是两点尺寸呢?,我们对它的定义是“指的是在垂直于轴线的任意截面内,连线过圆心且在零件表面上的两点间的距离”,这里的“轴线”必须是最小二乘圆柱的轴线,“圆心”必须是最小二乘圆的圆心。见下图:

 

图7 图纸和实际零件

已知图纸要求和实际零件如图7所示,如何严格按照标准来检测该轴的直径呢?分三步:

第一步,在实际零件表面采点拟合成最小而成圆柱,找出最小二乘圆柱轴线,见图8:

图8 拟合最小二乘圆柱

第二步,垂直于图8中获得的最小二乘圆柱的轴线,找出截面A-A(多个),见图9:

 

 

图9 找出截面A-A

第三步,在该截面上采点拟合称最小二乘圆,找出该最小二乘圆的圆心。然后在该截面上任意取连线过该圆心的两点,测出距离, 如下图中的d1,d2,d3, 这就是两点尺寸(局部尺寸)。见图10:

图10 两点尺寸(局部尺寸)

只要图10中的两点距离满足22±0.1,该轴的直径就是合格的。

看完上面的三大步骤,相信经常在生产线上做检测的小伙伴嘴里马上会蹦出两个字,“蛋疼”!

而生产车间,检测部门,为了检测这根轴的直径,常规的做法也是分三步来检测:

第一步,拿起游标卡尺

第二步,检测

第三步,放下游标卡尺

事实上,在零件的形状误差不大的情况下,用常规的三大步和高逼格的三大步测量结果的差异并不大,是可以执行的。但并不意味着标准规定的测量方法是多余,它是规定了一种严谨的,具体的,没有争议的一种操作方法,如果客户和供应商发生争执,必须依据标准规定的测量方法来仲裁。

顺便提一下,海克斯康的2017版三坐标软件PC-DMIS里边已经有了测量局部尺寸的功能,如图11中的LP指的就是两点尺寸即局部尺寸(Local Point)。

 

图11 局部尺寸在PC-DMIS中

1.2 尺寸要素的尺寸加GG修饰符号

根据ISO14405-1,如果尺寸要素的尺寸加了GG修饰符号,这时要求实际零件的最小二乘圆柱的直径必须满足图纸要求,见图12:

图12 GG要求在图纸中

图12要求,则要求该实际轴线的最小二乘圆柱直径d必须满足Φ22±0.1。另外, GG的测法在2017版的PC-DMIS里也有,参考图11.

 

2. 最小二乘法应用在几何公差

2.1 默认的几何公差控制

在ISO中,当几何公差控制的对象是中心线的时候,默认都是提取中心线。已知零件图和实际零件如下图所示,要求测量直线度,这时直线度的约束对象则是这根轴的提取中心线,而这个提取中心线的获得,也是要分三步才能获得。见下图:

图13 图纸要求和实际零件

第一步,在实际零件表面采点获得最小二乘圆柱的轴线。见图14

图14 获得最小二乘圆柱轴线

第二步,在垂直于该最小二乘圆柱轴线的平面内采点,拟合出最小二乘圆(平面圆),找出其圆心,见图15

图15 获得最小二乘圆圆心

第三步,将所有获取的每个截面的最小二乘圆的圆心连起来,就形成了一条弯弯曲曲的中心线,这个中心线叫提取中心线(或提取中心要素),在ISO中,当几何公差约束中心要素时,所约束的对象就是这个玩意儿。只要这个提取中心线能够处在直径为Φ0.1的公差带范围内,该轴线的直线度就合格。

图16 直线度的要求

2.2 加修饰符G圈的几何公差控制

最新版的ISO1101:2017增加了很多修饰符号。尽管很烦,其最大的好处在于,设计工程师可以根据功能的需要任意定义需要控制的对象,能更加清晰的表明对零件的要求,使生产制造和质量检测不会出现误解。还有一个好处就是减少了ISO和ASME两个标准之间的差异。

其中有一个符号就是G圈,一旦加了G圈,其几何公差所约束的对象不再是提取中心线,而是最小二乘圆柱的轴线。见图17:

图17 图纸要求和实际零件

图17的垂直度增加了G圈的修饰符号,意味着被测对象不再是该孔的提取中心线,而是用该孔拟合出来的最小二乘圆柱的轴线,如图17所示:

图18 垂直度的要求

图18中,只要用实际孔拟合出来的最小二乘圆柱的轴线落在0.2的圆柱形公差带范围内,该孔的垂直度就合格。需要注意的是,一旦加了G圈,该垂直度不再控制直线度,为了控制其直线度,还要额外增加直线度的要求。而在ISO默认的要求(没有任何修饰符)中,该案例垂直度本来是可以控制直线度的。

最小二乘法的拟合,在几何公差的测量里还有其他地方会用到(如基准后边加G),这里不再一一叙述。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/253451.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

最小二乘法拟合直线

曲线拟合中最基本和最常用的是直线拟合。设x和y之间的函数关系为: y=abx 式中有两个待定参数,a代表截距,b代表斜率。对于等精度测量所得到的N组数据(xi,yi),i=1&#xff…

多项式函数曲线拟合——最小二乘法

多项式函数拟合的任务是假设给定数据由M次多项式函数生成,选择最有可能产生这些数据的M次多项式函数,即在M次多项式函数中选择一个对已知数据以及未知数据都有很好预测能力的函数。 最小二乘法(又称最小平方法)是一种数学优化技术…

最小二乘法入门(Matlab直线和曲线拟合)

参考博客:https://blog.csdn.net/wokaowokaowokao12345/article/details/72850143 多的就不多说了,持续脱发中!!! 最小二乘法历史起源之类的:https://baike.baidu.com/item/%E6%9C%80%E5%B0%8F%E4%BA%8C%…

曲线拟合的最小二乘原理

文章目录 1 什么是最小二乘2 最小二乘原理3 最小二乘应用示例4 法方程到底是什么 1 什么是最小二乘 在科学实验的统计方法研究中,往往要从一组实验数据 ( x i , y i ) ( i 0 , 1 , 2 , … , m ) (x_i,y_i)(i0,1,2,…,m) (xi​,yi​)(i0,1,2,…,m) 中寻找自变量 …

最小二乘法曲线拟合原理

最小二乘法曲线拟合原理 一、最小二乘法原理 对于给定的一组数据(xi,yi),假定它满足n次多项式: 为了求取各阶参数的最优解,对于每个xi,通过n次多项式计算的值和yi之间的差值的平方和应该最小&#xff0c…

最小二乘法

1、概述 最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差(真实目标对象与拟合目标对象的差)的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数…

最小二乘法多项式曲线拟合原理与实现

概念 最小二乘法多项式曲线拟合,根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线yf(x)的近似曲线y φ(x)。 原理 [原理部分由个人根据互联网上的资料进行总结,希望对大家能有用] 给定数据点pi(xi,yi),其中i1,2,…,m…

最小二乘法曲线拟合以及Matlab实现

最小二乘法曲线拟合以及Matlab实现 在实际工程中,我们常会遇到这种问题:已知一组点的横纵坐标,需要绘制出一条尽可能逼近这些点的曲线(或直线),以进行进一步进行加工或者分析两个变量之间的相互关系。而获…

最小二乘法(least squares)的曲线拟合(curve fitting)

第三十八篇 最小二乘法的曲线拟合 如果我们想得到一个通过大量由实验或者计算机程序获得的数据点的函数,它实际是在寻找一个“最适合”数据的函数,而不是一个完全经过所有点。可以采用各种策略来最小化各个数据点之间的误差和逼近函数。其中最著名的是最小二乘法,它…

曲线拟合——最小二乘法( Ordinary Least Square,OLS)

文章目录 前言一、曲线拟合是什么?二、最小二乘法是什么?三、求解最小二乘法(包含数学推导过程)四、使用步骤1.引入库2.读入数据 总结 前言 随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都…

最小二乘法进行曲线拟合

工作需求,这里记录一下数值插值和数值分析方面的算法,希望和大家一起进步。 曲线拟合的最小二乘定义 求一条曲线,使数据点均在离此曲线的上方或下方不远处,所求的曲线称为拟合曲线, 它既能反映数据的总体分布,又不至于出现局部较大的波动,更能反映被逼…

最小二乘法的曲线拟合

最小二乘法解决的问题:AxC 无解下的最优解 例子1: 一条过原点的直线OA,C是直线外一点,求C在OA上的投影点P 例子1 例子2: 已知三个不在一条直线上的点A,B,C,求一条直线,使A,B,C到直线的距离和最小…

最小二乘法曲线拟合

最小二乘法曲线拟合以及Matlab实现 在实际工程中,我们常会遇到这种问题:已知一组点的横纵坐标,需要绘制出一条尽可能逼近这些点的曲线(或直线),以进行进一步进行加工或者分析两个变量之间的相互关系。而获…

chatgpt赋能python:Python中输出的完整指南

Python中输出的完整指南 在Python中进行编程,输出是至关重要的一部分。它可用于在命令行界面或Web应用程序中显示结果、数据操作等。Python具有各种输出方法,包括print语句,文件和日志记录。在本文中,我们将深入研究Python中输出…

机器视觉康耐视智能相机Insight-手眼标定详细步骤

(Q有答疑)康耐视VisionPro工具与脚本入门级系列教程2023 In-Sight 智能相机包含标定手眼的工具 CalibrateGrid,用手动的标定方式,即将康耐视标定片固定在运动平台上,然后手动输入电机位置坐标,要保证电机在 X 方向移动一次,Y 方向移动一次,旋转两次角度,切旋转角度差不能…

ChatGPT的4个不为人知却非常实用的小功能

今天重点介绍四个ChatGPT很实用的小功能。 一、停止生成 如果在ChatGPT输出内容的过程中,我们发现结果不是自己想要的,可以直接点击“Stop generating”按钮,这样它就会立即停止输出。 二、复制功能 在ChatGPT返回对话的右侧,有三…

SQL 插入带引号的字段

今天突然想了下给字段插入引号的SQL该怎样写,然后就百度了一下,结果看各位的结果真是云里雾里啊 ╮(╯▽╰)╭ 然后就自己本机测试了一下 O(∩_∩)O,三种数据库都可以 不知道我这样写有没有问题呢 ... 稍微介绍一下吧: 如果要向…

什么是IPSec?6000字带你详细剖析,很赞!

关注、星标公众号,精彩内容每日送达 来源:网络素材 1.IPSEC协议簇安全框架 a.IPSec简介 IPSec(Internet Protocol Security):是一组基于网络层的,应用密码学的安全通信协议族。IPSec不是具体指哪个协议&…

C++ set类成员函数介绍 (set和multiset)

目录 🤔set模板介绍: 🤔特点: 🤔set的成员函数: 😊set构造函数: 🔍代码实例: 🔍运行结果: 😊 set赋值函数&#xf…

MySQL之数据库基本查询语句

——————今天距2020年43天—————— 这是ITester软件测试小栈第80次推文 SELECT 基本查询语句 查询单个列 #查询Author表name列的值 select name from Author;查询多个列 #查询Author表id,name两列的值 select id,name from Author;查询所有列 #查询Author表所有列的信息…