手写数字识别之网络结构

目录

手写数字识别之网络结构

数据处理

经典的全连接神经网络

卷积神经网络


手写数字识别之网络结构
 

无论是牛顿第二定律任务,还是房价预测任务,输入特征和输出预测值之间的关系均可以使用“直线”刻画(使用线性方程来表达)。但手写数字识别任务的输入像素和输出数字标签之间的关系显然不是线性的,甚至这个关系复杂到我们靠人脑难以直观理解的程度。


图1:数字识别任务的输入和输出不是线性关系


 

因此,我们需要尝试使用其他更复杂、更强大的网络来构建手写数字识别任务,观察一下训练效果,即将“横纵式”教学法从横向展开,如 图2 所示。本节主要介绍两种常见的网络结构:经典的多层全连接神经网络和卷积神经网络


图2:“横纵式”教学法 — 网络结构优化



数据处理

#数据处理部分之前的代码,保持不变
import os
import random
import paddle
import numpy as np
import matplotlib.pyplot as plt
from PIL import Imageimport gzip
import json# 定义数据集读取器
def load_data(mode='train'):# 加载数据datafile = './work/mnist.json.gz'print('loading mnist dataset from {} ......'.format(datafile))data = json.load(gzip.open(datafile))print('mnist dataset load done')# 读取到的数据区分训练集,验证集,测试集train_set, val_set, eval_set = data# 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLSIMG_ROWS = 28IMG_COLS = 28if mode == 'train':# 获得训练数据集imgs, labels = train_set[0], train_set[1]elif mode == 'valid':# 获得验证数据集imgs, labels = val_set[0], val_set[1]elif mode == 'eval':# 获得测试数据集imgs, labels = eval_set[0], eval_set[1]else:raise Exception("mode can only be one of ['train', 'valid', 'eval']")#校验数据imgs_length = len(imgs)assert len(imgs) == len(labels), \"length of train_imgs({}) should be the same as train_labels({})".format(len(imgs), len(labels))# 定义数据集每个数据的序号, 根据序号读取数据index_list = list(range(imgs_length))# 读入数据时用到的batchsizeBATCHSIZE = 100# 定义数据生成器def data_generator():if mode == 'train':random.shuffle(index_list)imgs_list = []labels_list = []for i in index_list:img = np.array(imgs[i]).astype('float32')label = np.array(labels[i]).astype('float32')# 在使用卷积神经网络结构时,uncomment 下面两行代码img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32')label = np.reshape(labels[i], [1]).astype('float32')imgs_list.append(img) labels_list.append(label)if len(imgs_list) == BATCHSIZE:yield np.array(imgs_list), np.array(labels_list)imgs_list = []labels_list = []# 如果剩余数据的数目小于BATCHSIZE,# 则剩余数据一起构成一个大小为len(imgs_list)的mini-batchif len(imgs_list) > 0:yield np.array(imgs_list), np.array(labels_list)return data_generator
 

经典的全连接神经网络

经典的全连接神经网络来包含四层网络:输入层、两个隐含层和输出层,将手写数字识别任务通过全连接神经网络表示,如 图3 所示。


图3:手写数字识别任务的全连接神经网络结构


 

  • 输入层:将数据输入给神经网络。在该任务中,输入层的尺度为28×28的像素值。
  • 隐含层:增加网络深度和复杂度,隐含层的节点数是可以调整的,节点数越多,神经网络表示能力越强,参数量也会增加。在该任务中,中间的两个隐含层为10×10的结构,通常隐含层会比输入层的尺寸小,以便对关键信息做抽象,激活函数使用常见的Sigmoid函数。
  • 输出层:输出网络计算结果,输出层的节点数是固定的。如果是回归问题,节点数量为需要回归的数字数量。如果是分类问题,则是分类标签的数量。在该任务中,模型的输出是回归一个数字,输出层的尺寸为1。

说明:

隐含层引入非线性激活函数Sigmoid是为了增加神经网络的非线性能力。

举例来说,如果一个神经网络采用线性变换,有四个输入x1x_1x1​~x4x_4x4​,一个输出yyy。假设第一层的变换是z1=x1−x2z_1=x_1-x_2z1​=x1​−x2​和z2=x3+x4z_2=x_3+x_4z2​=x3​+x4​,第二层的变换是y=z1+z2y=z_1+z_2y=z1​+z2​,则将两层的变换展开后得到y=x1−x2+x3+x4y=x_1-x_2+x_3+x_4y=x1​−x2​+x3​+x4​。也就是说,无论中间累积了多少层线性变换,原始输入和最终输出之间依然是线性关系。


Sigmoid是早期神经网络模型中常见的非线性变换函数,通过如下代码,绘制出Sigmoid的函数曲线。

def sigmoid(x):# 直接返回sigmoid函数return 1. / (1. + np.exp(-x))# param:起点,终点,间距
x = np.arange(-8, 8, 0.2)
y = sigmoid(x)
plt.plot(x, y)
plt.show()
 

<Figure size 432x288 with 1 Axes>

针对手写数字识别的任务,网络层的设计如下:

  • 输入层的尺度为28×28,但批次计算的时候会统一加1个维度(大小为batch size)。
  • 中间的两个隐含层为10×10的结构,激活函数使用常见的Sigmoid函数。
  • 与房价预测模型一样,模型的输出是回归一个数字,输出层的尺寸设置成1。

下述代码为经典全连接神经网络的实现。完成网络结构定义后,即可训练神经网络。

import paddle.nn.functional as F
from paddle.nn import Linear# 定义多层全连接神经网络
class MNIST(paddle.nn.Layer):def __init__(self):super(MNIST, self).__init__()# 定义两层全连接隐含层,输出维度是10,当前设定隐含节点数为10,可根据任务调整self.fc1 = Linear(in_features=784, out_features=10)self.fc2 = Linear(in_features=10, out_features=10)# 定义一层全连接输出层,输出维度是1self.fc3 = Linear(in_features=10, out_features=1)# 定义网络的前向计算,隐含层激活函数为sigmoid,输出层不使用激活函数def forward(self, inputs):# inputs = paddle.reshape(inputs, [inputs.shape[0], 784])outputs1 = self.fc1(inputs)outputs1 = F.sigmoid(outputs1)outputs2 = self.fc2(outputs1)outputs2 = F.sigmoid(outputs2)outputs_final = self.fc3(outputs2)return outputs_final

卷积神经网络

虽然使用经典的全连接神经网络可以提升一定的准确率,但其输入数据的形式导致丢失了图像像素间的空间信息,这影响了网络对图像内容的理解。对于计算机视觉问题,效果最好的模型仍然是卷积神经网络。卷积神经网络针对视觉问题的特点进行了网络结构优化,可以直接处理原始形式的图像数据,保留像素间的空间信息,因此更适合处理视觉问题。

卷积神经网络由多个卷积层和池化层组成,如 图4 所示。卷积层负责对输入进行扫描以生成更抽象的特征表示,池化层对这些特征表示进行过滤,保留最关键的特征信息


图4:在处理计算机视觉任务中大放异彩的卷积神经网络


两层卷积和池化的神经网络实现如下所示。

# 定义 SimpleNet 网络结构
import paddle
from paddle.nn import Conv2D, MaxPool2D, Linear
import paddle.nn.functional as F
# 多层卷积神经网络实现
class MNIST(paddle.nn.Layer):def __init__(self):super(MNIST, self).__init__()# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2self.conv1 = Conv2D(in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=2)# 定义池化层,池化核的大小kernel_size为2,池化步长为2self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2self.conv2 = Conv2D(in_channels=20, out_channels=20, kernel_size=5, stride=1, padding=2)# 定义池化层,池化核的大小kernel_size为2,池化步长为2self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)# 定义一层全连接层,输出维度是1self.fc = Linear(in_features=980, out_features=1)# 定义网络前向计算过程,卷积后紧接着使用池化层,最后使用全连接层计算最终输出# 卷积层激活函数使用Relu,全连接层不使用激活函数def forward(self, inputs):x = self.conv1(inputs)x = F.relu(x)x = self.max_pool1(x)x = self.conv2(x)x = F.relu(x)x = self.max_pool2(x)x = paddle.reshape(x, [x.shape[0], -1])x = self.fc(x)return x

使用MNIST数据集训练定义好的卷积神经网络,如下所示。


说明:
以上数据加载函数load_data返回一个数据迭代器train_loader,该train_loader在每次迭代时的数据shape为[batch_size, 784],因此需要将该数据形式reshape为图像数据形式[batch_size, 1, 28, 28],其中第二维代表图像的通道数(在MNIST数据集中每张图片的通道数为1,传统RGB图片通道数为3)。

#网络结构部分之后的代码,保持不变
def train(model):model.train()#调用加载数据的函数,获得MNIST训练数据集train_loader = load_data('train')# 使用SGD优化器,learning_rate设置为0.01opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())# 训练5轮EPOCH_NUM = 10# MNIST图像高和宽IMG_ROWS, IMG_COLS = 28, 28loss_list = []for epoch_id in range(EPOCH_NUM):for batch_id, data in enumerate(train_loader()):#准备数据images, labels = dataimages = paddle.to_tensor(images)labels = paddle.to_tensor(labels)#前向计算的过程predicts = model(images)#计算损失,取一个批次样本损失的平均值loss = F.square_error_cost(predicts, labels)avg_loss = paddle.mean(loss)#每训练200批次的数据,打印下当前Loss的情况if batch_id % 200 == 0:loss = avg_loss.numpy()[0]loss_list.append(loss)print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, loss))#后向传播,更新参数的过程avg_loss.backward()# 最小化loss,更新参数opt.step()# 清除梯度opt.clear_grad()#保存模型参数paddle.save(model.state_dict(), 'mnist.pdparams')return loss_listmodel = MNIST()
loss_list = train(model)
loading mnist dataset from ./work/mnist.json.gz ......
mnist dataset load done
epoch: 0, batch: 0, loss is: 25.196237564086914
epoch: 0, batch: 200, loss is: 2.8643529415130615
epoch: 0, batch: 400, loss is: 2.0646779537200928
epoch: 1, batch: 0, loss is: 3.135349988937378
epoch: 1, batch: 200, loss is: 2.058072090148926
epoch: 1, batch: 400, loss is: 2.080343723297119
epoch: 2, batch: 0, loss is: 1.9587202072143555
epoch: 2, batch: 200, loss is: 1.6729546785354614
epoch: 2, batch: 400, loss is: 1.7185478210449219
epoch: 3, batch: 0, loss is: 1.4882879257202148
epoch: 3, batch: 200, loss is: 1.239805817604065
epoch: 3, batch: 400, loss is: 1.5459805727005005
epoch: 4, batch: 0, loss is: 2.2185895442962646
epoch: 4, batch: 200, loss is: 1.598059058189392
epoch: 4, batch: 400, loss is: 1.8100342750549316
epoch: 5, batch: 0, loss is: 1.324904441833496
epoch: 5, batch: 200, loss is: 1.1214401721954346
epoch: 5, batch: 400, loss is: 1.9421234130859375
epoch: 6, batch: 0, loss is: 1.0814441442489624
epoch: 6, batch: 200, loss is: 1.5564398765563965
epoch: 6, batch: 400, loss is: 0.9601972699165344
epoch: 7, batch: 0, loss is: 1.287195086479187
epoch: 7, batch: 200, loss is: 1.1438658237457275
epoch: 7, batch: 400, loss is: 1.0299162864685059
epoch: 8, batch: 0, loss is: 1.0495307445526123
epoch: 8, batch: 200, loss is: 1.5844645500183105
epoch: 8, batch: 400, loss is: 0.9159772992134094
epoch: 9, batch: 0, loss is: 0.8777803778648376
epoch: 9, batch: 200, loss is: 1.1280484199523926
epoch: 9, batch: 400, loss is: 1.1104599237442017

可视化损失变化:

def plot(loss_list):plt.figure(figsize=(10,5))freqs = [i for i in range(len(loss_list))]# 绘制训练损失变化曲线plt.plot(freqs, loss_list, color='#e4007f', label="Train loss")# 绘制坐标轴和图例plt.ylabel("loss", fontsize='large')plt.xlabel("freq", fontsize='large')plt.legend(loc='upper right', fontsize='x-large')plt.show()plot(loss_list)

<Figure size 720x360 with 1 Axes>

比较经典全连接神经网络和卷积神经网络的损失变化,可以发现卷积神经网络的损失值下降更快,且最终的损失值更小。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/1621641.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

[牛客复盘] 牛客周赛 Round 9 20230827

[牛客复盘] 牛客周赛 Round 9 20230827 总结小美的外卖订单编号1. 题目描述2. 思路分析3. 代码实现 小美的加法1. 题目描述2. 思路分析3. 代码实现 小美的01串翻转1. 题目描述2. 思路分析3. 代码实现 小美的数组操作1. 题目描述2. 思路分析3. 代码实现 六、参考链接 总结 又是…

数据分析基础-数据可视化学习笔记03-可视化的符号与表示-图形符号学

概念 图型符号学&#xff08;Cartographic Symbolization&#xff09;是地图学领域中的一个重要概念&#xff0c;涉及到如何使用不同的符号、颜色、图案和标记来在地图上表示地理信息和数据。图型符号学旨在传达地理信息&#xff0c;使得地图能够清晰、有效地传达各种空间数据…

DDT数据驱动测试

简单介绍 ​ DDT&#xff08;Date Driver Test&#xff09;&#xff0c;所谓数据驱动测试&#xff0c;简单来说就是由数据的改变从而驱动自动化测试的执行&#xff0c;最终引起测试结果的改变。通过使用数据驱动测试的方法&#xff0c;可以在需要验证多组数据测试场景中&#…

【80天学习完《深入理解计算机系统》】第十一天 3.5 过程(函数调用)

专注 效率 记忆 预习 笔记 复习 做题 欢迎观看我的博客&#xff0c;如有问题交流&#xff0c;欢迎评论区留言&#xff0c;一定尽快回复&#xff01;&#xff08;大家可以去看我的专栏&#xff0c;是所有文章的目录&#xff09;   文章字体风格&#xff1a; 红色文字表示&#…

模板(二)

目录 非类型模板参数 引入 分类 使用typename的特殊情况 注意点 模板特化 引入 介绍 函数模板特化 使用 ​编辑 优点 类模板特化 全特化 偏特化 部分特化 特殊的特化 使用 分离编译 介绍 问题代码示例 代码 说明 预处理 编译 链接 类模板实例化…

期货量化软件:衡量指标信息

机器学习依靠数据训练来学习市场的一般行为&#xff0c;最终做出相当准确的预测。 所选学习算法必须遍历精心挑选的样本&#xff0c;以便提取有意义的信息。 许多人未能成功应用这些精密工具的原因是&#xff0c;大多数有意义的信息都隐藏在嘈杂的数据当中。 对于许多策略开发人…

期货量化交易软软件:怎样开发可以获利的交易策略

简介 通过技术分析开发成功交易策略的过程可以分为以下几步: ​ 编辑 添加图片注释&#xff0c;不超过 140 字&#xff08;可选&#xff09; 在某个资产价格图表窗口上附加几个技术指标, 并识别出其中信号指标与市场关联的模式. 把上一步相关性分析取得的数据进行公式化. …

免费期货量化交易软件:种群优化算法引力搜索算法(GSA)

1. 概述 ​​​​​​​ 引力搜索算法&#xff08;GSA&#xff09;是由 E. Rashedi 提出的&#xff0c;用于解决优化问题&#xff0c;特别是非线性问题&#xff0c;它遵循牛顿的万有引力定律原理。 在所提议的算法中&#xff0c;粒子被视为物体&#xff0c;并在考虑其质量的情…

免费_期货量化软件:神经网络变得轻松-网络训练和测试

1. 定义问题 在开始创建智能交易系统之前&#xff0c;必须定义将为新神经网络设定的目标。 当然&#xff0c;金融市场上所有智能交易系统的共同目标是获利。 然而&#xff0c;此目的太笼统宽泛。 赫兹期货量化软件需要为神经网络指定更具体的任务。 甚至&#xff0c;我们需要了…

免费期货量化软件:多层感知器和反向传播算法

免费期货量化软件&#xff1a;多层感知器和反向传播算法 什么是 TensorFlow&#xff1f; TensorFlow 是一个快速数值处理的开源函数库。 它是由 Google 依照 Apache 开源许可下创建、支持和发布。 该 API 是为 Python 语言设计的&#xff0c;尽管它也可以访问基本的 C API。…

免费期货量化软件策略:艾伦·安德鲁斯和他的时间序列分析技术

我相信&#xff0c;所有现代图表分析应用程序都会包括 安德鲁草叉。 在高级系统中&#xff0c;在原本的三条主线中会添加一些额外的线&#xff08;例如&#xff0c;为了更方便&#xff0c;赫兹期货量化中加入了“侧边”等级&#xff09;。 一些开发人员在他们的程序中包括“希夫…

免费期货量化软件:数据科学与机器学习——线性回归

它是一个跨学科领域&#xff0c;它运用科学方法、流程、算法、系统&#xff0c;从嘈杂、结构化和非结构化数据中提取出知识和见解&#xff0c;并将这些知识和可操作的见解在广泛的应用领域加以运用。 数据科学家则是创建编程代码、并将其与统计学相结合&#xff0c;从中挖掘创…

免费期货量化软件策略:在一张图表上的多个指标为用户开发

通常&#xff0c;当我们开始实现一个新系统时&#xff0c;我们并不真正知道我们如何对其进行改进&#xff1b;故此&#xff0c;我们应该始终启动一个新项目&#xff0c;并着眼于未来进行改进。 这对那些刚开始的人来说非常重要&#xff1a;持续地规划一些事情&#xff0c;想象未…

免费期货量化软件策略您能用移动平均线做什么呢?

我们将学习布林带&#xff0c;它测量数据在其平均值附近的离散度。该指标由约翰博林格&#xff08;John Bollinger&#xff09;创造。 它由围绕 20 天移动平均线的两条波段构成&#xff0c;以测量数据&#xff08;价格&#xff09;在其均值&#xff08;20 天移动平均线&#xf…

免费期货量化软件策略:从头开始开发智能交易系统(第 25 部分)

概述 在上一篇文章提供系统健壮性 &#xff08;I&#xff09;中&#xff0c;赫兹期货量化已经看到了如何更改 EA 的某些部分&#xff0c;从而令系统更加可靠和健壮。 这只是针对兹期货量化将要在本文中所做之事的介绍。 请忘记您所知道的、计划的、或希望的一切。 这里最困难…

免费期货量化软件:学习如何设计一款布林带Bollinger Bands交易系统

我们将学习布林带&#xff0c;它测量数据在其平均值附近的离散度。该指标由约翰博林格&#xff08;John Bollinger&#xff09;创造。 它由围绕 20 天移动平均线的两条波段构成&#xff0c;以测量数据&#xff08;价格&#xff09;在其均值&#xff08;20 天移动平均线&#xf…

免费期货量化软件:针对交易的组合数学和概率论曲线分析

赫兹期货量化将继续为构建多重状态、可扩展的交易系统奠定基础。 在本文的框架内&#xff0c;我想为您展示如何利用前几篇文章中的发展成果&#xff0c;来进一步阐述交易过程的广泛可能性。 这有助于从这些层面评估策略&#xff0c;来弥补其它分析方法未能涵盖的地方。 在本文中…

免费期货量化软件:从头开始开发智能交易系统概念上的飞跃

有时&#xff0c;在开发一些项目时&#xff0c;我们也许会发现新的思路和新的可能特性&#xff0c;这些特性能够派上用场&#xff0c;并为我们正在创建的系统提供极大的改进。 但问题出来了&#xff1a;实现新功能的最简单途径是什么&#xff1f; 问题在于&#xff0c;有时我们…

Bugku 密室逃脱 WP

一、打开题目 二、解压文件夹&#xff0c;查看文件和压缩包&#xff0c;发现压缩包进行了加密 三、查看剧本&#xff0c;发现摩斯密码&#xff0c;并解析得到电脑密码&#xff1a;xjpc 四、输入电脑密码得到一张图片和一个压缩包&#xff0c;查看图片发现图片位置发生错误&a…