Linux:进程等待 进程替换

Linux:进程等待 & 进程替换

    • 进程等待
      • wait接口
      • status
      • waitpid接口
    • 进程替换
      • exec系列接口


当一个进程死亡后,会变成僵尸进程,此时进程的PCB被保留,等待父进程将该PCB回收。那么父进程要如何回收这个僵尸进程的PCB呢?父进程通过进程等待的方式,来回收子进程的PCB,并得知子进程的退出信息


进程等待

进程等待用于回收子进程的资源,避免子进程的PCB一直占用资源,并且可以获取子进程的退出信息,得知子进程任务的执行情况,进程等待主要通过两个系统调用接口waitwaitpid来完成。

wait接口

使用wait接口,需要包含头文件<sys/types.h><sys/wait.h>,其函数原型为:

pid_t wait(int* stat_loc);

其接收一个int*指针,该参数是一个输出型参数,用于返回子进程的相关推出信息。

wait的返回值是一个int类型:

  • 返回值大于0:返回等待到的子进程的pid
  • 返回值小于0:等待失败

用一段代码来演示一下:

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>int main()
{pid_t id = fork();if(id == 0){int cnt = 5;printf("I'm child, pid = %d\n", getpid());while(cnt--){sleep(1);printf("%d\n", cnt);}return 5;}int status = 0;int ret = wait(&status);printf("wait over! status = %d, ret = %d\n", status, ret);return 0;
}

以上代码中,先通过fork创建了一个子进程,子进程进入if语句,进行五秒倒计时,然后退出,并且退出码为-5。父进程则通过wait函数进行等待,传入指针&status,接收返回值ret,最后输出statusret的值。

输出结果:

在这里插入图片描述

首先,子进程的pid34890,而wait的返回值就是子进程的pid。其次,status一开始被初始化为0wait之后,status = 1280,可知wait确实会修改传入的参数。

而这中间还有一个细节,那就是子进程总共sleep了五秒,而父进程在等待的这五秒中,啥事也没干,就等着子进程结束,然后对它进行回收,这个过程父进程处于阻塞状态,称为阻塞等待

简单了解wait后,那么现在的问题就是,status为什么是1280

status

status要当作一个位图来看:
在这里插入图片描述

  • 灰色部分:status是一个int类型,占32比特,但是后16比特是无效的,不填入任何内容
  • 黄色部分:第8 - 15位,共8比特,用于表示wait到的子进程的退出码
  • 绿色部分:第7位,core dump标志位本博客不关心该位置
  • 蓝色部分:第0 - 6位,共7比特,用户表示wait到的子进程的退出信号

那么我们要从status中提取出退出码退出信号,就要对其进行位操作:

status直接与01111111进行按位与&,就能得到退出信号01111111的十六进制表示为0X7F

int sig = status & 0x7F;

status右移8位后,与11111111进行按位与&,就能得到退出码11111111的十六进制表示为0XFF

int code = (status >> 8) & 0xFF;

现在在代码的最后加上这样一段:

int sig = status & 0x7F;
int code = (status >> 8) & 0xFF;printf("exit code = %d, signal = %d\n", code, sig);

现在运行一下进程:

在这里插入图片描述

现在我们可以看到,子进程的退出码为5,退出信号为0了。你也可以尝试在另外一个窗口对进程发送信号,看看信号接收是否准确,本博客不演示了。

Linux还给用户提供了两个宏函数,用于检测status

WIFEXITED:检测进程是否正常退出,返回一个布尔值,如果进从正常退出,返回真
WEXITSTATUS:提取子进程的退出码,也就是第8 - 15

if(WIFSIGNALED(status))printf("exit code = %d\n", WEXITSTATUS(status));
elseprintf("子进程退出异常...\n");

这样就可以更简单的提取错误码了。


waitpid接口

进程等待的另外一个接口是waitpid接口,需要包含头文件<sys/types.h><sys/wait.h>,其函数原型为:

pid_t waitpid(pid_t pid, int* stat_loc, int options);

相比于wait接口,该接口功能更丰富和强大,但是使用也更加麻烦。

一个进程是可以有多个子进程的,一个wait只能等待一个子进程,如果有多个子进程,那么wait函数等待第一个结束的子进程。waitpid则是针对pid来对进程进行等待

其第一个参数传入子进程的pid,第二个参数用于接收推出信息,也就是刚刚的status,第三个参数用于控制等待的模式。

现在我们先用以下代码来验证一下waitwaitpid的区别:

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>int main()
{pid_t id1 = fork();if(id1 == 0){printf("I'm child1, pid = %d\n", getpid());sleep(5);return 0;}pid_t id2 = fork();if(id2 == 0){printf("I'm child2, pid = %d\n", getpid());sleep(1);return 0;}int status = 0;int ret = wait(&status);printf("wait over! pid = %d\n", ret);sleep(10);return 0;
}

以上代码中,我们通过fork创建了两个子进程,第一个子进程输出自己的pid后会sleep五秒,而第二个子进程输出pidsleep一秒。父进程只wait一次,最后父进程输出wait的返回值,而返回值就是等待到的子进程的pid,这样就可以判断wait到了哪一个子进程。

输出结果:

在这里插入图片描述

child1pid = 35042child2pid = 35043,而wait的返回值为35043,说明wait到了第二个进程。因为第二个进程先结束,所以被wait先接收了

现在我们把wait改为waitpid

int status = 0;
int ret = waitpid(id1, &status, 0);

现在我们通过waitpid的第一个参数,指定等待id1,也就是第一个子进程,其第三个参数先设为0,后续讲解该参数的作用。

输出结果:

在这里插入图片描述

这一次返回值和child1匹配上了,可以说明虽然child1更晚结束,但是waitpid只会等待指定的进程,如果有子进程先结束了,waitpid也不会回收它。

简单了解waitpid后,我们再来看看第三个参数。第三个参数用于控制进程等待的模式:

  • 0:进行阻塞等待
  • WNOHANG:进行非阻塞等待

我在讲解wait时,简单提到了阻塞等待,也就是父进程在wait的时候,什么也不做,进入阻塞状态,直到wait成功。

而非阻塞等待不一样,进行非阻塞等待时,如果本次waitpid没有等待到,那么父进程不会阻塞,waitpid直接返回0,表示本次等待没有等待到子进程。此时父进程就可以空出时间去完成别的任务,而不是傻乎乎地死等了。

示例:

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>int main()
{pid_t id = fork();if(id == 0){printf("I'm child, pid = %d\n", getpid());sleep(5);return 0;}int status = 0;while(1){sleep(1);int ret = waitpid(id, &status, WNOHANG);if(ret == 0){printf("子进程未结束,执行其他任务...\n");//执行其他任务}else if (ret > 0){printf("wait over! pid = %d\n", ret);break;}else{printf("waitpid错误!\n");break;}}return 0;
}

以上代码中先通过fork创建了一个子进程,子进程sleep五秒。父进程陷入一个while死循环,每次循环开始,都waitpid一次,以WNOHANG模式。由于该模式不会阻塞,只要当前子进程没有结束,那么waitpid直接返回,去执行后面的if语句。

如果当前返回值为0,说明当前子进程没有结束,那么父进程可以去做些别的事情,一秒后再回来检测子进程有没有结束。

如果当前返回值> 0,说明子进程结束了,waitpid也成功了,此时返回值就是子进程的pid ,跳出循环。

输出结果:

在这里插入图片描述

子进程一共执行五秒后才退出,以非阻塞等待的模式,父进程就可以把这五秒拿去做其他事情。


进程替换

通过fork创建的子进程,会继承父进程的代码和数据,因此本质上还是在执行父进程的代码。但是我们大部分时候创建子进程的目的是用于执行其它代码的,而不是父进程自己的代码,那么此时就要有操作,让进程去执行其他进程的代码,这个操作就叫做进程替换

进程替换可以将别的进程的代码替换到自己的代码区,让自己去执行别人的代码。进程替换是通过exec系列系统调用接口实现的。

exec系列接口

先看看man手册中的exec

在这里插入图片描述

exec系列接口整体还是比较复杂的,它们包含在<unistd.h>中,总共有六个接口,我们一个一个来讲解。

execl接口

函数原型如下:

int execl(const char* pathname, const char* arg, ... /* (char  *) NULL */);

其接收两个固定的参数pathnamearg,以及一个可变参数...,也许你先前没了解过,这个...就是指可以接收任意个数的参数。

  • pathname:用于指定替换的进程的路径
  • arg:以何种方式运行进程
  • ...:以何种方式运行该进程

另外的,函数声明中还有一小段备注/* (char *) NULL */,其意图告诉使用者:==使用可变参数...时,必须以NULL空指针来结尾。

也许你现在还不能很好理解这个接口的用法,我们先看一个示例:

当前目录结构如下:

在这里插入图片描述

当前目录下有一个test.c,在dir目录下有一个process.exe进程,该进程中的代码如下:

#include <stdio.h>int main()
{for(int i = 0; i < 5; i++){printf("I am process.c!\n");}return 0;
}

也就是说,process.exe进程会输出五条I am process.c!,现在我们的目的是把进程process.exe替换到test.c中。

代码如下:

#include <stdio.h>
#include <unistd.h>int main()
{printf("execl start!\n");execl("./dir/process.exe", "dir/process.exe", NULL);printf("execl over!\n");return 0;
}

其中execl("dir/process.exe", "dir/process.exe", NULL);就是进程替换的语句

  • 第一个参数"dir/process.exe":用于指明该进程的路径
  • 第二个参数 "dir/process.exe":它和第一个参数虽然一样,但只是一个巧合,如果你在当前目录下,要运行process.exe,你会执行什么样的指令?应该就是dir/process.exe,也就是说这个参数相当于你在命令行中输入的内容,这里只是碰巧路径和命令行输入的内容是一致的
  • 第三个参数NULL:格式要求以NULL结尾

那么我们的代码就完成了先输出execl start!,然后替换process.exe到当前进程后,输出五条I am process.c!,最后输出execl over!,是这样吗?

看看结果:

在这里插入图片描述

可以看到,在execl start!之后,发送进程替换,把process.exe替换到当前进程后,输出了五条I am process.c!,但是最后一句execl over!消失了

这是因为,进程替换不是简单的执行别的进程的代码,而是用别的进程的代码区覆盖掉自己原先的代码区,所以execl 一旦执行,整个进程的代码都被替换了,那么printf("execl over!\n");就会被覆盖掉,最后不输出。

刚刚的例子意图展示,在自己写的两个进程中,发送进程替换。那么我们在shell中执行的指令是不是也是进程呢?是的!所以我们也可以尝试去替换一些指令当我们自己的进程中,比如ls,pwd等指令。

现在我们尝试替换系统自带的一些进程到自己的进程中:

#include <stdio.h>
#include <unistd.h>int main()
{printf("----------- execl start! -----------\n");execl("/usr/bin/ls", "ls", "-l", "-a", NULL);return 0;
}

我们现在要替换ls指令到自己的进程中,ls指令在/usr/bin/ls中,我们希望以ls -l -a的形式来调用这个进程,因此我们的三个参数 "ls", "-l", "-a"就是这个指令拆分出来的三个字符串。现在你应该更好地理解了,中间这部分参数的作用,最后以NULL结尾。

输出结果:

在这里插入图片描述

我们成功在当前进程中,替换了ls指令,并且是以ls -l -a的形式调用的。


execlp接口

函数原型如下:

int execlp(const char* file, const char* arg, ... /* (char  *) NULL */);
  • file:用于指定替换的进程名称
  • arg:以何种方式运行进程
  • ...:运行该进程的选项
  • 最后以NULL结尾

与刚刚的execl不同的是,第一个参数从pathname路径,变成了file文件名。

该接口的意思是:不用指明路径,只需指明替换的进程的名称,然后会自动去环境变量PATH指定的路径中查找

也就是说:可以在系统中直接执行的指令,无需指明路径,只需要指明文件名就可以替换

示例:

#include <stdio.h>
#include <unistd.h>int main()
{printf("----------- execl start! -----------\n");execlp("ls", "ls", "-l", "-a", NULL);return 0;
}

现在我们依然要执行ls -l -a,但是我们用了execlp接口,ls是系统自带的指令,所以不用指明路径,系统会自己去查找。

  • "ls":要替换的进程名称为ls
  • "ls", "-l", "-a":以ls -l -a形式执行
  • NULL结尾

执行结果:

在这里插入图片描述

和刚才一样,我们成功替换了ls指令到当前进程。


execle接口

函数原型如下:

int execle(const char *pathname, const char *arg, ... /*, (char *) NULL, char *const envp[] */);

从函数原型,我们可以看到一些熟悉的参数:

  • pathname:用于指定替换的进程的路径
  • arg:以何种方式运行进程
  • ...:以何种形式执行进程
  • NULL

唯一不同的是,要求我们在NULL后面额外加一个char* const envp[]

这个envp是一个指针数组,存储的是环境变量。一般来说,进程替换后,进程的环境变量是会用原先的环境变量的。

示例:

现在我们在process.exe中执行以下代码:

#include <stdio.h>int main(int argc, char* argv[], char* env[])
{for(int i = 0; env[i] != NULL; i++){printf("%s\n", env[i]);}return 0;
}

process.exe会输出所有的环境变量,然后我们再在test.c中替换这个进程:

#include <stdio.h>
#include <unistd.h>int main()
{printf("----------- execl start! -----------\n");execl("dir/process.exe", "dir/process.exe", NULL);return 0;
}

输出结果:

在这里插入图片描述

test.c输出了一句----------- execl start! -----------后就去替换了process.exe,随后输出了默认的环境变量表。

execle可以给替换后的进程指定环境变量表

示例:

#include <stdio.h>
#include <unistd.h>int main()
{printf("----------- execl start! -----------\n");char* const envp[] = {"A=aaa", "B=bbb", NULL};execle("dir/process.exe", "dir/process.exe", NULL, envp);return 0;
}

我自己伪造了一个环境变量表envp,并把它作为最后一个参数传递给替换后的进程。

输出结果:

在这里插入图片描述

可以看到,此时替换后的进程,环境变量表就变成了我们指定的变量表。


接下来我带大家回顾一下以上三个接口:

  • execl:指定路径,进行进程替换
  • execlp:指定文件名,进行进程替换
  • execle:指定路径,进行进程替换,并给替换后的进程指定环境变量表
字符含义
p用文件名代替路径,到环境变量PATH指定的路径查找
e指定环境变量

看到后面的三个接口,可以看到一些熟悉的身影:

int execv(const char *pathname, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execvpe(const char *file, char *const argv[], char *const envp[]);

除去v字符,pe的功能我们都了解,那么我就只以execv为案例:

execv接口

函数原型如下:

int execv(const char *pathname, char *const argv[]);

相比于execl,其少了一个...的可变参数,改为了一个argv数组,而...就是用来指定以何种方式调用进程,或者说指定选项的,带有v系列的接口,将这些选项存储在一个数组中,然后把数组传入

示例:

#include <stdio.h>
#include <unistd.h>int main()
{printf("----------- execl start! -----------\n");char* const argv[] = {"ls", "-l", "-a", NULL};execv("/usr/bin/ls", argv);return 0;
}

我希望以ls -l -a形式调用ls,于是把ls-l-a三个字符串存储到数组argv中,并以NULL结尾。

字符含义
llist,以列表的形式,把选项一个一个以参数形式传入
vvector,以数组的形式,把选项都存在数组中,将整个数组传入

汇总一下六个接口:

//list系列
int execl(const char* pathname, const char* arg, ... /* (char  *) NULL */);
int execlp(const char* file, const char* arg, ... /* (char  *) NULL */);
int execle(const char *pathname, const char *arg, ... /*, (char *) NULL, char *const envp[] */);
//vector系列
int execv(const char *pathname, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execvpe(const char *file, char *const argv[], char *const envp[]);
字符含义
p用文件名代替路径,到环境变量PATH指定的路径查找
e指定环境变量
llist,以列表的形式,把选项一个一个以参数形式传入
vvector,以数组的形式,把选项都存在数组中,将整个数组传入

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3018259.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

47.Redis学习笔记

小林coding -> 图解redis的学习笔记 文章目录 Rediswindwos安装docker安装redis启动redis使用RDM访问虚拟机中的redispython连接redis缓存穿透、击穿、雪崩基本数据类型高级数据类型高并发指标布隆过滤器分布式锁Redis 的有序集合底层为什么要用跳表&#xff0c;而不用平衡…

什么是 AI Agent ?

&#xff08;注&#xff1a;本文为小报童精选文章。已订阅小报童或加入知识星球「玉树芝兰」用户请勿重复付费&#xff09; 讲解的同时&#xff0c;也给你推荐一些实用的学习资源。 AI agent &#xff08;智能体 / 代理&#xff09;这个词儿最近非常流行&#xff0c;似乎「大语…

目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)

文章目录 一、目标检测介绍二、YOLOv7介绍三、源码/论文获取四、环境搭建4.1 环境检测 五、数据集准备六、 模型训练七、模型验证八、模型测试九、错误总结9.1 错误1-numpy jas mp attribute int9.2 错误2-测试代码未能跑出检测框9.3 错误3- Command git tag returned non-zero…

RabbitMQ高级(MQ的问题,消息可靠性,死信交换机,惰性队列,MQ集群)【详解】

目录 一、MQ的问题 1. 问题说明 2. 准备代码环境 1 创建project 2 创建生产者模块 3 创建消费者模块 二、消息可靠性 1. 介绍 2. 生产者确认机制 3. MQ消息持久化 4. 消费者确认机制 5. 消费者auto模式的失败重试 6. 小结 三、死信交换机和延迟消息 1. 介绍 2. …

【EasySpider】EasySpider+mysql执行配置异常

问题 使用易采集工具操作时候&#xff0c;遇到一个执行异常&#xff0c;后来发现没有选择数据类型 Loading stealth.min.js MySQL config file path: ./mysql_config.json 成功连接到数据库。 Successfully connected to the database. Traceback (most recent call last):…

湘潭大学数据库作业题完整答案

作业一&#xff1a; 考虑如下所示的关系数据库。这些关系上适当的主码是什么&#xff1f; 职工&#xff08;姓名&#xff0c;街道&#xff0c;城市&#xff09; 工作&#xff08;姓名&#xff0c;公司名&#xff0c;工资&#xff09; 公司&#xff08;公司名&#xff0c;城市&a…

45 套接字

本节重点 认识ip地址&#xff0c;端口号&#xff0c;网络字节序等网络编程中的基本概念 学习scoket&#xff0c;api的基本用法 能够实现一个简单的udp客户端/服务端 能够实现一个简单的tcp客户端/服务器&#xff08;但链接版本&#xff0c;多进程版本&#xff0c;多线程版本&a…

设计严谨,思路绝妙!这篇高级孟德尔随机化研究:药靶、共定位,发文一区(IF=8.9)!...

现在越来越多的学者在用孟德尔随机化高级方法发文&#xff0c;今天我们看的这篇这篇药靶孟德尔随机化&#xff0c;还用了共定位分析方法&#xff0c;亮点在于它的设计严谨&#xff0c;思路绝妙&#xff0c;一起看下去吧&#xff01; 2024年4月21日&#xff0c;四川大学华西医院…

(四)JVM实战——GC垃圾回收

垃圾回收算法 垃圾的判别 引用计数法&#xff1a;实现简单&#xff0c;判定效率高&#xff0c;回收没有延迟&#xff1b;无法解决循环引用的问题&#xff1b;可达性分析算法&#xff08;根搜索算法&#xff09;&#xff1a;没有循环引用的问题&#xff0c;防止内存泄漏 GCRo…

【挑战30天首通《谷粒商城》】-【第一天】03、简介-分布式基础概念

文章目录 课程介绍 ( 本章了解即可&#xff0c;可以略过)1、微服务简而言之: 2、集群&分布式&节点2.1、定义2.2、示例 3、远程调用4、负载均衡常见的负裁均衡算法: 5、服务注册/发现&注册中心6、配置中心7、服务熔断&服务降级7.1、服务熔断7.2、服务降级 8、AP…

纹理映射技术在AI去衣应用中的关键作用

引言&#xff1a; 随着人工智能技术的飞速发展&#xff0c;其在图像处理领域中的应用也日益广泛。AI去衣&#xff0c;作为一种颇具争议的技术应用&#xff0c;指的是利用深度学习算法自动移除或替换图片中的衣物。在这一过程中&#xff0c;纹理映射技术扮演了不可或缺的角色。本…

LLMs之GPT4ALL:GPT4ALL的简介、安装和使用方法、案例应用之详细攻略

LLMs之GPT4ALL&#xff1a;GPT4ALL的简介、安装和使用方法、案例应用之详细攻略 目录 GPT4ALL的简介 0、新功能 1、特点 2、功能 3、技术报告 GPT4ALL的安装和使用方法 1、安装 2、使用方法 GPT4ALL的案例应用 LLMs之LLaMA3&#xff1a;基于GPT4ALL框架对LLaMA-3实现…

数据结构-线性表-应用题-2.2-6

从有序顺序表中删除所有其值重复的元素&#xff0c;使表中的元素的值均不同 有序顺序表&#xff0c;值相同的元素一定在连续的位置上&#xff0c;初始时将第一个元素是为非重复的有序表&#xff0c;之后依次判断后面的元素是否与前面的非重复表的最后一个元素相同&#xff0c;…

JVM调参实践总结

JVM调优–理论篇从理论层面介绍了如何对JVM调优。这里再写一篇WIKI&#xff0c;尝试记录下JVM参数使用的最佳实践&#xff0c;注意&#xff0c;这里重点介绍HotSpot VM的调参&#xff0c;其他JVM的调参可以类比&#xff0c;但不可照搬。 Java版本选择 基于Java开发应用时&…

【Git】Git学习-10-11:GitHub,SHH配置,克隆仓库

学习视频链接&#xff1a;【GeekHour】一小时Git教程_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1HM411377j/?vd_source95dda35ac10d1ae6785cc7006f365780 创建仓库 配置SSH密钥可以更加安全&#xff0c;方便地推送、拉取代码 根目录下&#xff0c;进入.ssh文件&am…

gradio图像复原界面改进

图像复原界面展示需要输入图像和复原图像在界面的清晰对比&#xff0c;修改两张图像为同样大小。 默认情况&#xff1a; intreface代码如下&#xff1a; interface gr.Interface(fnrestore, # 要调用的函数inputs[gr.Image(label"输入图像")], # 第一个输入&am…

大数据Scala教程从入门到精通第三篇:Scala和Java的关系

一&#xff1a;Scala和Java的关系 1&#xff1a;详解 一般来说&#xff0c;学 Scala的人&#xff0c;都会 Java&#xff0c;而 Scala 是基于 Java 的&#xff0c;因此我们需要将 Scala和 Java 以及 JVM 之间的关系搞清楚&#xff0c;否则学习 Scala 你会蒙圈 Scala可以使用SDK…

构建 WebRTC 一对一信令服务器

构建 WebRTC 一对一信令服务器 构建 WebRTC 一对一信令服务器前言为什么选择 Nodejs&#xff1f;Nodejs 的基本原理浏览器使用 Nodejs安装 Nodejs 和 NPMsocket.io信令服务器搭建信令服务器客户端服务端启动服务器并测试 总结参考 构建 WebRTC 一对一信令服务器 前言 我们在学…

前后端分离项目中的一些疑惑

1、前后端分离项目&#xff0c;浏览器发起请求后&#xff0c;请求的是前端服务器还是后端服务器&#xff1f; 在前后端分离的项目中&#xff0c;当浏览器发起请求时&#xff0c;它首先会请求的是前端服务器。 前后端分离的工作流程大致如下&#xff1a; 用户在浏览器中输入网…

ws注入js逆向调用函数

这里需要选择一个文件夹 随便 紫色为修改保存 记得ctrls保存 注入代码如下 (function() {var ws new WebSocket("ws://127.0.0.1:8080")ws.onmessage function(evt) {console.log("收到消息&#xff1a;" evt.data);if (evt.data "exit") {…