目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)

文章目录

  • 一、目标检测介绍
  • 二、YOLOv7介绍
  • 三、源码/论文获取
  • 四、环境搭建
    • 4.1 环境检测
  • 五、数据集准备
  • 六、 模型训练
  • 七、模型验证
  • 八、模型测试
  • 九、错误总结
    • 9.1 错误1-numpy jas mp attribute int
    • 9.2 错误2-测试代码未能跑出检测框
    • 9.3 错误3- Command 'git tag' returned non-zero
    • 9.4 错误4-No loop matching the specified signature and casting was found for ufunc greater

一、目标检测介绍

目标检测(Object Detection)是计算机视觉领域的一项重要技术,旨在识别图像或视频中的特定目标并确定其位置。通过训练深度学习模型,如卷积神经网络(CNN),可以实现对各种目标的精确检测。常见的目标检测任务包括:人脸检测、行人检测、车辆检测等。目标检测在安防监控、自动驾驶、智能零售等领域具有广泛应用前景。

二、YOLOv7介绍

YOLOv7(You Only Look Once version 7)是YOLO系列目标检测算法的最新版本,以其高效的实时性能和出色的检测准确率而备受关注。YOLOv7在目标检测领域具有显著的创新点和优势,以下是对YOLOv7的一些关键介绍:

  1. 模型优化与技术发展:YOLOv7在模型结构、损失函数设计、正负样本匹配等方面进行了优化,以适应日益复杂的目标检测任务。

  2. 模型结构重参化:YOLOv7引入了模型结构重参化,通过优化网络中的不同层来提高模型性能,减少模型复杂度,提高推理速度,并提升检测精度。

  3. 动态标签分配策略:YOLOv7提出了一种新的动态标签分配策略,即coarse-to-fine策略,有效提高了模型的训练效果。

  4. ELAN高效网络架构:YOLOv7采用了名为ELAN的高效网络架构,专注于提高模型的推理速度和检测精度。

  5. 带辅助头的训练:YOLOv7采用了带辅助头的训练方法,通过在模型的不同阶段引入额外的监督信息,提高检测准确率。

  6. 技术原理:YOLOv7的技术原理基于深度学习和计算机视觉技术,包括输入处理、骨干网络、颈部网络和头部网络,其中每个部分都经过了精心设计和优化。

  7. 实际应用与前景展望:YOLOv7在自动驾驶、安防监控、智能家居等领域具有广泛的应用前景。

  8. 性能测试:YOLOv7在不同速度和精度的范围内超过了已知的检测器,特别是在GPU V100上进行测试时,展现了其卓越的性能。

  9. 模型缩放:YOLOv7为不同的GPU设计了不同版本的模型,包括边缘GPU、普通GPU和云GPU,并针对不同的服务需求进行了模型缩放。

  10. 实验与结论:YOLOv7在MS COCO数据集上进行了训练测试,证明了其在实时目标检测中的新标杆地位。

在这里插入图片描述

三、源码/论文获取

代码:https://github.com/WongKinYiu/yolov7
论文:https://arxiv.org/abs/2207.02696

四、环境搭建

# (1)创建python环境
>conda create -n YOLOv8_My python=3.8.10
# (2)激活环境
>conda activate YOLOv8_My
# (3)安装ultralytics和pytorch
>pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116 -i https://pypi.tuna.tsinghua.edu.cn/simple/
>pip install ultralytics==8.1.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
>pip install tensorboard -i https://pypi.tuna.tsinghua.edu.cn/simple/

4.1 环境检测

下载预训练模型:点击
然后命令行输入

python detect.py --weights yolov7.pt

看到以下的图片就说明环境没问题。
在这里插入图片描述

五、数据集准备

这时候说明环境是没问题的了,我们可以准备数据集了,数据集的格式就是VOC格式中的Main里面的txt文件,图片的绝对路径。
在这里插入图片描述

在这里插入图片描述

直接将YOLO图片路径转成txt单文件:

# From Mr. Dinosaurimport osdef listdir(path, list_name):  # 传入存储的listfor file in os.listdir(path):file_path = os.path.join(path, file)if os.path.isdir(file_path):listdir(file_path, list_name)else:list_name.append(file_path)list_name = []
path = r'E:/dataset/yolov5_dataset/steel_defect_datasets/images/train/'.replace("\\","/")  # 文件夹路径
listdir(path, list_name)
print(list_name)with open(r'E:/dataset/yolov5_dataset/steel_defect_datasets/train.txt'.replace("\\","/"), 'w') as f:  # 要存入的txtwrite = ''for i in list_name:write = write + str(i) + '\n'f.write(write)

这时候我们可以看到Main文件下有train.txt和val.txt。

六、 模型训练

1.修改数据集配置文件:
在这里插入图片描述

2.修改模型配置文件
在这里插入图片描述
3.修改训练代码
在这里插入图片描述
4.命令行输入

python train.py  

在这里插入图片描述

七、模型验证

修改test.py
在这里插入图片描述
然后在命令行运行:python test.py

八、模型测试

修改detect.py
在这里插入图片描述然后在命令行运行:python detect.py

九、错误总结

9.1 错误1-numpy jas mp attribute int

在这里插入图片描述
numpy库如果安装最新的1.24.1,会发生module numpy has no attribute int 错误,这个错误我找了很久, 这个是因为numpy版本的原因,1.24以上的版本没有int了,改为inf了,换成1.23的版本就好了,或者把报错出的int改成inf就可以了,所以requirements.txt中的numpy库建议直接替换成numpy==1.23.0,这个就没有问题了。

9.2 错误2-测试代码未能跑出检测框

主函数加入
torch.backends.cudnn.enabled = False

9.3 错误3- Command ‘git tag’ returned non-zero

subprocess.CalledProcessError: Command ‘git tag’ returned non-zero exit status 128.
解决办法
改为绝对路径

    parser.add_argument('--weights', type=str, default=r'F:\python\company_code\Object_detection\yolov7-main\yolov7.pt', help='initial weights path')

9.4 错误4-No loop matching the specified signature and casting was found for ufunc greater

临时解决方法:np.greater去掉dtype

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3018255.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

RabbitMQ高级(MQ的问题,消息可靠性,死信交换机,惰性队列,MQ集群)【详解】

目录 一、MQ的问题 1. 问题说明 2. 准备代码环境 1 创建project 2 创建生产者模块 3 创建消费者模块 二、消息可靠性 1. 介绍 2. 生产者确认机制 3. MQ消息持久化 4. 消费者确认机制 5. 消费者auto模式的失败重试 6. 小结 三、死信交换机和延迟消息 1. 介绍 2. …

【EasySpider】EasySpider+mysql执行配置异常

问题 使用易采集工具操作时候,遇到一个执行异常,后来发现没有选择数据类型 Loading stealth.min.js MySQL config file path: ./mysql_config.json 成功连接到数据库。 Successfully connected to the database. Traceback (most recent call last):…

湘潭大学数据库作业题完整答案

作业一: 考虑如下所示的关系数据库。这些关系上适当的主码是什么? 职工(姓名,街道,城市) 工作(姓名,公司名,工资) 公司(公司名,城市&a…

45 套接字

本节重点 认识ip地址,端口号,网络字节序等网络编程中的基本概念 学习scoket,api的基本用法 能够实现一个简单的udp客户端/服务端 能够实现一个简单的tcp客户端/服务器(但链接版本,多进程版本,多线程版本&a…

设计严谨,思路绝妙!这篇高级孟德尔随机化研究:药靶、共定位,发文一区(IF=8.9)!...

现在越来越多的学者在用孟德尔随机化高级方法发文,今天我们看的这篇这篇药靶孟德尔随机化,还用了共定位分析方法,亮点在于它的设计严谨,思路绝妙,一起看下去吧! 2024年4月21日,四川大学华西医院…

(四)JVM实战——GC垃圾回收

垃圾回收算法 垃圾的判别 引用计数法:实现简单,判定效率高,回收没有延迟;无法解决循环引用的问题;可达性分析算法(根搜索算法):没有循环引用的问题,防止内存泄漏 GCRo…

【挑战30天首通《谷粒商城》】-【第一天】03、简介-分布式基础概念

文章目录 课程介绍 ( 本章了解即可,可以略过)1、微服务简而言之: 2、集群&分布式&节点2.1、定义2.2、示例 3、远程调用4、负载均衡常见的负裁均衡算法: 5、服务注册/发现&注册中心6、配置中心7、服务熔断&服务降级7.1、服务熔断7.2、服务降级 8、AP…

纹理映射技术在AI去衣应用中的关键作用

引言: 随着人工智能技术的飞速发展,其在图像处理领域中的应用也日益广泛。AI去衣,作为一种颇具争议的技术应用,指的是利用深度学习算法自动移除或替换图片中的衣物。在这一过程中,纹理映射技术扮演了不可或缺的角色。本…

LLMs之GPT4ALL:GPT4ALL的简介、安装和使用方法、案例应用之详细攻略

LLMs之GPT4ALL:GPT4ALL的简介、安装和使用方法、案例应用之详细攻略 目录 GPT4ALL的简介 0、新功能 1、特点 2、功能 3、技术报告 GPT4ALL的安装和使用方法 1、安装 2、使用方法 GPT4ALL的案例应用 LLMs之LLaMA3:基于GPT4ALL框架对LLaMA-3实现…

数据结构-线性表-应用题-2.2-6

从有序顺序表中删除所有其值重复的元素,使表中的元素的值均不同 有序顺序表,值相同的元素一定在连续的位置上,初始时将第一个元素是为非重复的有序表,之后依次判断后面的元素是否与前面的非重复表的最后一个元素相同,…

JVM调参实践总结

JVM调优–理论篇从理论层面介绍了如何对JVM调优。这里再写一篇WIKI,尝试记录下JVM参数使用的最佳实践,注意,这里重点介绍HotSpot VM的调参,其他JVM的调参可以类比,但不可照搬。 Java版本选择 基于Java开发应用时&…

【Git】Git学习-10-11:GitHub,SHH配置,克隆仓库

学习视频链接:【GeekHour】一小时Git教程_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1HM411377j/?vd_source95dda35ac10d1ae6785cc7006f365780 创建仓库 配置SSH密钥可以更加安全,方便地推送、拉取代码 根目录下,进入.ssh文件&am…

gradio图像复原界面改进

图像复原界面展示需要输入图像和复原图像在界面的清晰对比,修改两张图像为同样大小。 默认情况: intreface代码如下: interface gr.Interface(fnrestore, # 要调用的函数inputs[gr.Image(label"输入图像")], # 第一个输入&am…

大数据Scala教程从入门到精通第三篇:Scala和Java的关系

一:Scala和Java的关系 1:详解 一般来说,学 Scala的人,都会 Java,而 Scala 是基于 Java 的,因此我们需要将 Scala和 Java 以及 JVM 之间的关系搞清楚,否则学习 Scala 你会蒙圈 Scala可以使用SDK…

构建 WebRTC 一对一信令服务器

构建 WebRTC 一对一信令服务器 构建 WebRTC 一对一信令服务器前言为什么选择 Nodejs?Nodejs 的基本原理浏览器使用 Nodejs安装 Nodejs 和 NPMsocket.io信令服务器搭建信令服务器客户端服务端启动服务器并测试 总结参考 构建 WebRTC 一对一信令服务器 前言 我们在学…

前后端分离项目中的一些疑惑

1、前后端分离项目,浏览器发起请求后,请求的是前端服务器还是后端服务器? 在前后端分离的项目中,当浏览器发起请求时,它首先会请求的是前端服务器。 前后端分离的工作流程大致如下: 用户在浏览器中输入网…

ws注入js逆向调用函数

这里需要选择一个文件夹 随便 紫色为修改保存 记得ctrls保存 注入代码如下 (function() {var ws new WebSocket("ws://127.0.0.1:8080")ws.onmessage function(evt) {console.log("收到消息:" evt.data);if (evt.data "exit") {…

微生物群落构建(community assembly)

Introduction Zhou, J. & Ning, D. Stochastic Community Assembly: Does It Matter in Microbial Ecology? Microbiol Mol Biol Rev 81, e00002-17 (2017). This review is very comprehensive (1)! 周集中老师实验室的长期研究兴趣集中在从基因组到生态系统…

YOLOv5改进 | 主干篇 | 2024.5全新的移动端网络MobileNetV4改进YOLOv5(含MobileNetV4全部版本改进)

一、本文介绍 本文给大家带来的改进机制是MobileNetV4,其发布时间是2024.5月。MobileNetV4是一种高度优化的神经网络架构,专为移动设备设计。它最新的改动总结主要有两点,采用了通用反向瓶颈(UIB)和针对移动加速器优化…

CSS学习笔记之基础教程(二)

上节内容CSS学习笔记之基础教程&#xff08;一&#xff09; 6、边距 6.1 外边距&#xff1a;margin 6.1.1 外边距 marginmargin-topmargin-leftmargin-bottommargin-right <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8…