生成式AI在B端产品的应用分析

AI产品发展到现在,消费端的产品应用还受到比较大的限制;但是在B端,已经有了不错的表现。作者总结了AI产品在B端的几款应用,一起来看看表现如何。

生成式AI在B端产品的应用分析

生成式AI在B端产品的应用分析© 由 ZAKER 提供

随着今年生成式AI应用的大范围涌现,B端产品也面临转型的机遇和挑战。

接下来我会从不同角度分析生成式AI在B端应用场景,希望可以给大家提供一些参考和启发。

  1. AI原生应用 vs 已有产品的AI辅助
  2. Agent、Copilot和智能对话助手的区别

01 AI原生应用 vs 已有产品的AI辅助

传统的B端产品通常以web界面查看数据、图表或者进行特定工作流为主,那么,目前的AI原生应用和已有产品的AI辅助,对于B端产品业务场景的设计有什么参考意见呢?

下面我整理了几类和B端业务比较类似的应用进行分析:

1. 面壁智能 ChatDev:多Agent协作,更高效

生成式AI在B端产品的应用分析

生成式AI在B端产品的应用分析© 由 人人都是产品经理 提供

B端业务通常涉及多个角色,需要多方协作。

面壁智能的ChatDev主打的就是让多个Agent协作,完成一个任务。

以红包雨小游戏为例,输入需求后,会有多个Agent开始为你打工输出代码。

里面有:设计产品的Agent、开发代码的Agent、测试代码的Agent,一整个“定制团队”专门为你服务。

对于B端产品设计的思考:

  • 我们产品里的角色是否也可以抽象为不同的Agent?
  • 是否可以通过将不同角色的任务线上化、自动化,来实现多Agent协作,提高业务效率?

2. 通义点金:更懂金融,对话式查询数据、图表的交互体验

生成式AI在B端产品的应用分析

生成式AI在B端产品的应用分析© 由 人人都是产品经理 提供

B端的业务一般需要查询数据,数据多种多样,往往有很多界面用来查表格、查图表,产品需要准备复杂的操作文档,用户的使用门槛也比较高。

通义点金的例子:一个懂金融的问答大模型,可以对话式查询数据,生成表格、图表。

对于B端产品设计的思考:

相比传统Web界面的开发,对话式查询的交互体验可能前期投入较高,但后期维护成本很低;不过复杂精细的配置需求可能还是需要使用Web界面。

3. Process On AI助手:在已有流程图软件上,通过生成式AI辅助创作

生成式AI在B端产品的应用分析

生成式AI在B端产品的应用分析© 由 人人都是产品经理 提供

前面2个都是AI原生应用,但很多场景里,我们需要在已有产品上去增加AI的能力。

Process On的AI助手,就是在已有流程图软件的基础上,支持通过生成式AI辅助流程图的绘制,包括:输入需求自动生成步骤和流程图、风格美化、翻译等功能。

对于B端产品设计的思考:

我们的产品中是否有需要生成内容、翻译等工作?可以考虑通过AI助手提高这部分工作的效率。

4. Office PPT小助手:基于主题创作大纲、生成PPT

生成式AI在B端产品的应用分析

生成式AI在B端产品的应用分析© 由 人人都是产品经理 提供

如果说前面这些案例好像自己的产品都没什么能借鉴的,比如产品就是很传统的需要用户1、2、3步完成任务,没有那么灵活、可生成。

可以看Office PPT小助手的例子,基于有限的主题进行搜索选择,生成大纲,然后生成PPT。感觉就是把已有的内容模板和PPT模板的功能重新包装了一下。

对于B端产品设计的思考:

产品是否有已有的功能或模板、知识库,可以通过智能化、生成式AI的结合,向生成式AI方向转变?

对比分析小结

生成式AI在B端产品的应用分析

生成式AI在B端产品的应用分析© 由 人人都是产品经理 提供

02 Agent、Copilot和智能对话助手的区别

可能经常看到Agent智能体,微软提的Copilot,还有小爱同学等智能对话助手也升级了大模型,它们之间到底有什么区别呢?

只有弄清楚这些类别的不同,对于我们自己设计产品,对于产品的方向定位才能更加明确。

以智能汽车为例:

  • Agent:无人驾驶汽车,它都能搞定;
  • Copilot:辅助驾驶模式,在你的掌控下,帮助你做一些简单的任务;
  • 智能对话助手:汽车里的语音助手,比如小迪、小爱同学等,可以和它对话了解信息、做一些简单的操作。

不过目前Agent和智能对话助手有些时候叫法、定义上是有重复的,可以大致参考。

以下是一些Agent、Copilot和智能对话助手的应用示例:

1. Agent:有明确的业务流程,可以完全自动化

钉钉AI助理市场-简历生成助手

生成式AI在B端产品的应用分析

生成式AI在B端产品的应用分析© 由 人人都是产品经理 提供

  • 只需要给出大致的情况、想要突出的能力,就能快速生成一个专业可用的简历。
  • 修改简历:可以直接口述要修改的部分,也可以一键跳转网页进行更深度调整。

2. Copilot:有明确的业务流程,但仍需有人监管

特斯拉的辅助驾驶模式

生成式AI在B端产品的应用分析

生成式AI在B端产品的应用分析© 由 人人都是产品经理 提供

1)使用方向盘上的拨杆或使用触摸屏开启

2)开启辅助驾驶后:

  • 仪表盘上车速表和方向盘图标将变为蓝色。
  • 车辆将自动保持车道并与前方车辆保持安全距离。
  • 驾驶员仍然需要双手握住方向盘,并随时准备接管驾驶。

3)特斯拉辅助驾驶功能状态的指示:

  • 仪表盘上车速表和方向盘图标的颜色:蓝色表示已启用;灰色未启用。
  • 方向盘上的触觉反馈:当驾驶员需要接管驾驶时,方向盘会轻微振动。
  • 触摸屏上的视觉指示:当前车速、与前方车辆的距离以及车道线的位置。

3. 智能对话助手:需要通过对话进行问答、查询和简单的修改

  • 这块市面上有很多,就不一一列举了,我自己目前用的比较多的是Google的Gemini,信息比较新和全,而且除了能帮我搜集资料,还能提供一些启发性的建议。

03 结束语

虽然生成式AI的浪潮来势汹汹,但我始终相信愿意学习、持续成长的人,永远不会被浪打倒。

希望我们都能拥抱变化,迎接挑战,迭代出自己的1.0、2.0、3.0版本。

二发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试

【新智元导读】前段时间,微软公布并开源了最新一代大模型WizardLM-2,号称性能堪比GPT-4。不过,还未上线一天,模型权重和公告全被删除了,原因竟是......

上周,微软空降了一个堪称GPT-4级别的开源模型WizardLM-2。

却没想到发布几小时之后,立马被删除了。

有网友突然发现,WizardLM的模型权重、公告帖子全部被删除,并且不再微软集合中,除了提到站点之外,却找不到任何证据证明这个微软的官方项目。

编辑:编辑部 【新智元导读】前段时间,微软公布并开源了最新一代大模型WizardLM-2,号称性能堪比GPT-4。不过,还未上线一天,模型权重和公告全被删除了,原因竟是...... 上周,微软空降了一个堪称GPT-4级别的开源模型Wizar

编辑:编辑部 【新智元导读】前段时间,微软公布并开源了最新一代大模型WizardLM-2,号称性能堪比GPT-4。不过,还未上线一天,模型权重和公告全被删除了,原因竟是...... 上周,微软空降了一个堪称GPT-4级别的开源模型Wizar© 由 新智元 提供

GitHub项目主页已成404。

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试© 由 新智元 提供

项目地址:https://wizardlm.github.io/

包括模型在HF上的权重,也全部消失了.....

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试© 由 新智元 提供

全网满脸疑惑,WizardLM怎么没了?

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试© 由 新智元 提供

然鹅,微软之所以这么做,是因为团队内部忘记对模型做「测试」。

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试© 由 新智元 提供

随后,微软团队现身道歉并解释道,自几个月前WizardLM发布以来有一段时间,所以我们对现在新的发布流程不太熟悉。

我们不小心遗漏了模型发布流程中所需的一项内容 :投毒测试

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试© 由 新智元 提供

微软WizardLM升级二代

去年6月,基于LlaMA微调而来的初代WizardLM一经发布,吸引了开源社区一大波关注。

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试© 由 新智元 提供

论文地址:https://arxiv.org/pdf/2304.12244.pdf

随后,代码版的WizardCoder诞生——一个基于Code Llama,利用Evol-Instruct微调的模型。

测试结果显示,WizardCoder在HumanEval上的pass@1达到了惊人的 73.2%,超越了原始GPT-4。

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试© 由 新智元 提供

时间推进到4月15日,微软开发者官宣了新一代WizardLM,这一次是从Mixtral 8x22B微调而来。

它包含了三个参数版本,分别是8x22B、70B和7B。

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试© 由 新智元 提供

最值得一提的是,在MT-Bench基准测试中,新模型取得了领先的优势。

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试© 由 新智元 提供

具体来说,最大参数版本的WizardLM 8x22B模型性能,几乎接近GPT-4和Claude 3。

在相同参数规模下,70B版本位列第一。

而7B版本是最快的,甚至可以达到与,参数规模10倍大的领先模型相当的性能。

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试© 由 新智元 提供

WizardLM 2出色表现的背后的秘诀在于,微软开发的革命性训练方法论Evol-Instruct。

Evol-Instruct利用大型语言模型,迭代地将初始指令集改写成越来越复杂的变体。然后,利用这些演化指令数据对基础模型进行微调,从而显著提高其处理复杂任务的能力。

另一个是强化学习框架RLEIF,也在WizardLM 2开发过程中起到了重要作用。

在WizardLM 2训练中,还采用了AI Align AI(AAA)方法,可以让多个领先的大模型相互指导和改进。

AAA框架由两个主要的组件组成,分别是「共同教学」和「自学」。

共同教学这一阶段,WizardLM和各种获得许可的开源和专有先进模型进行模拟聊天、质量评判、改进建议和缩小技能差距。

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试© 由 新智元 提供

通过相互交流和提供反馈,模型可向同行学习并完善自身能力。

对于自学,WizardLM可通过主动自学,为监督学习生成新的进化训练数据,为强化学习生成偏好数据。

这种自学机制允许模型通过学习自身生成的数据和反馈信息来不断提高性能。

另外,WizardLM 2模型的训练使用了生成的合成数据。

在研究人员看来,大模型的训练数据日益枯竭,相信AI精心创建的数据和AI逐步监督的模型将是通往更强大人工智能的唯一途径。

因此,他们创建了一个完全由AI驱动的合成训练系统来改进WizardLM-2。

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试© 由 新智元 提供

手快的网友,已经下载了权重

然而,在资料库被删除之前,许多人已经下载了模型权重。

在该模型被删除之前,几个用户还在一些额外的基准上进行了测试。

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试© 由 新智元 提供

好在测试的网友对7B模型感到印象深刻,并称这将是自己执行本地助理任务的首选模型。

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试© 由 新智元 提供

还有人对其进行了投毒测试,发现WizardLM-8x22B的得分为98.33,而基础Mixtral-8x22B的得分为89.46,Mixtral 8x7B-Indict的得分为92.93。

得分越高越好,也就是说WizardLM-8x22B还是很强的。

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试© 由 新智元 提供

如果没有投毒测试,将模型发出来是万万不可的。

大模型容易产生幻觉,人尽皆知。

如果WizardLM 2在回答中输出「有毒、有偏见、不正确」的内容,对大模型来说并不友好。

尤其是,这些错误引来全网关注,对与微软自身来说也会陷入非议之中,甚至会被当局调查。

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试© 由 新智元 提供

有网友疑惑道,你可以通过「投毒测试」更新指标。为什么要删除整个版本库和权重?

微软作者表示,根据内部最新的规定,只能这样操作。

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试© 由 新智元 提供

还有人表示,我们就想要未经「脑叶切除」的模型。

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试

发布几小时,微软秒删媲美GPT-4开源大模型!竟因忘记投毒测试© 由 新智元 提供

不过,开发者们还需要耐心等待,微软团队承诺,会在测试完成后重新上线。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2980539.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

LoggerFactory is not a Logback

错误信息 LoggerFactory is not a Logback LoggerContext but Logback is on the classpath. Either remove Logback or the competing implementation (class org.slf4j.impl.SimpleLoggerFactory loaded from file:/D:/maven/repository/org/slf4j/slf4j-simple/1.7.26/slf…

设计模式- 中介者模式(Mediator)

1. 概念 中介者模式(Mediator Pattern),是一种对象行为型模式。该模式的主要目的是定义一个中介对象来封装一系列对象之间的交互,使原有对象之间的耦合变得松散,并且可以独立地改变它们之间的交互。 2. 原理结构图 抽…

nginx服务访问页面白色

问题描述 访问一个域名服务返回页面空白,非响应404。报错如下图。 排查问题 域名解析正常,网络通讯正常,绕过解析地址访问源站IP地址端口访问正常,nginx无异常报错。 在打开文件时,发现无法打开配置文件&#xff0c…

java 学习一

jdk下载地址 配置环境变量

美国站群服务器如何解决跨国运营中的网络延迟问题?

美国站群服务器如何解决跨国运营中的网络延迟问题? 在当今全球化的商业环境中,跨国企业面临的一个重要挑战是网络延迟问题。网络延迟不仅影响用户体验,还可能导致交易失败或数据传输错误,对企业造成不利影响。然而,利用美国站群…

【机器学习】拉索回归与坐标下降法

实现高效特征选择与模型优化 一、拉索回归的原理与优势二、坐标下降法的实现三、总结与展望 在大数据时代,我们面临着从海量特征中筛选出关键信息,以构建高效预测模型的挑战。拉索回归(Lasso Regression)作为一种正则化技术&#…

视频滚动字幕一键批量轻松添加,解锁高效字幕编辑,提升视频质量与观众体验

视频已成为我们获取信息、娱乐休闲的重要渠道。一部成功的视频作品,除了画面精美、音质清晰外,字幕的添加也是至关重要的一环。字幕不仅能增强视频的观感,还能提升信息的传达效率,让观众在享受视觉盛宴的同时,更加深入…

怎样快速插入数据

1、30万条数据插入插入数据库验证 1.1、表结构: CREATE TABLE t_user (id int(11) NOT NULL AUTO_INCREMENT COMMENT 用户id,username varchar(64) DEFAULT NULL COMMENT 用户名称,age int(4) DEFAULT NULL COMMENT 年龄,PRIMARY KEY (id) ) ENGINEInnoDB DEFAULT…

相亲平台app小程序

相亲平台app小程序是一种基于手机应用的微型程序,专为在线相亲交友活动设计。它提供了一系列的功能,旨在帮助用户更方便、更高效地找到心仪的伴侣。 首先,用户可以在个人资料部分上传照片、填写个人资料、设置兴趣爱好等信息,以便…

交互式探索微生物群落与生态功能的关系

微生物群落在生态系统中发挥则重要功能,我们在对微生物群落进行分析时,会将不同分类水平(从门到属)的微生物类群的相对丰度与测定的某一生态功能进行相关性分析。但由于微生物类群数较多,又有不同的分类水平&#xff0…

grafana报错This panel requires Angular (deprecated)

1.原因 报错解释: Grafana在更新到7.0版本后,弃用了AngularJS(一种用于构建大型Web应用的JavaScript框架)。在早期的Grafana版本中,某些面板可能依赖于AngularJS,但这种依赖已经逐步被新的React或Vue面板所…

使用 Dify 和 Moonshot API 构建你的 AI 工作流(一):让不 AI 的应用 AI 化

有了之前的文章铺垫,这篇文章开始,我们聊聊如何折腾 AI 工作流,把不 AI 的应用,“AI 起来”。 写在前面 上个月,我们聊过了《使用 Dify 和 AWS Bedrock 玩转 Anthropic Claude 3》,里面介绍了如何使用交互…

WPF4 数据模板

数据模板 数据模板常用在3种类型的控件, 下图形式: 1.Grid这种列表表格中修改Cell的数据格式, CellTemplate可以修改单元格的展示数据的方式。 2.针对列表类型的控件, 例如树形控件,下拉列表,列表控件, 可以修改其中的ItemTemplate。 3.修改ContentT…

Linux RTC驱动深入解析

目录标题 实时时钟(RTC)基础Linux内核中的RTC框架RTC设备类设备树(Device Tree) 编写Linux RTC驱动1. 初始化和注册2. RTC设备操作函数3. 清理函数 测试RTC驱动驱动开发的挑战总结 在许多嵌入式系统和服务器上,实时时钟…

图像哈希:全局+局部提取特征

文章信息 作者:梁小平,唐振军期刊:ACM Trans. Multimedia Comput. Commun. Appl(三区)题目:Robust Hashing via Global and Local Invariant Features for Image Copy Detection 目的、实验步骤及结论 目…

STM32的端口引脚的复用功能及重映射功能解析

目录 STM32的端口引脚的复用功能及重映射功能解析 复用功能 复用功能的初始化 重映射功能 重映射功能的初始化 复用功能和重映射的区别 部分重映射与完全重映射 补充 STM32的端口引脚的复用功能及重映射功能解析 复用功能 首先、我们可以这样去理解stm32引脚的复用功能…

SpringBoot学习之Kafka发送消费消息入门实例(三十五)

使用Kafka之前需要先启动fKafka,如何下载安装启动kafka请先参考本篇文章的前两篇: 《SpringBoot学习之Kafka下载安装和启动【Windows版本】(三十四)》 《SpringBoot学习之Kafka下载安装和启动【Mac版本】(三十三)》 一、POM依赖 1、加入kafka依赖 2、我的整个POM代码…

Adobe Photoshop CC 2017无法打开解决方案

Adobe Photoshop CC 2017双击无反应,右键以管理员身份运行也没有反应 解决方案: 事件查看器中查看应用程序的事件 如果找到程序报错事件,网上下载ZXPSignLib-minimal.dll文件替换错误模块路径位置的该文件即可 ZXPSignLib-minimal.dll下载地…

SpringBoot+Vue开发记录(三)

说明:本篇文章的主要内容为需求分析。需求分析这一部分很重要,也稍微有点子难搞,所以本篇文章里的有些内容会有失偏颇。 一、准备步骤 我打算做一个刷题项目,但是具体这个项目该怎么做,我是一头雾水。 所以就要先进行…

pytorch-trainvaltest划分

目录 1. 上一节回顾2. 数据集划分3. 完整代码 1. 上一节回顾 下列图中三种曲线分别代表了欠拟合、好的拟合和过拟合 下图为过拟合曲线,那么如何来检测过拟合呢?将数据集划分为train和val(validation)val是用来测试训练过程是否过…