用Python将原始边列表转换为邻接矩阵

👽发现宝藏

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。

在图论和网络分析中,图是一种非常重要的数据结构,它由节点(或顶点)和连接这些节点的边组成。在Python中,我们可以使用邻接矩阵来表示图,其中矩阵的行和列代表节点,矩阵中的值表示节点之间是否存在边。

有时候,我们会从外部数据源中得到原始的边列表,而需要将其转换为邻接矩阵以便进行后续的分析和处理。本文将介绍如何使用Python来实现这一转换过程。

原始边列表

假设我们有一个原始边列表,其中每个元素都表示一条边,例如:

edges = [(0, 1), (0, 2), (1, 2), (2, 3)]

在这个例子中,每个元组 (a, b) 表示节点 a 和节点 b 之间存在一条边。

转换为邻接矩阵

我们首先需要确定图中节点的数量,然后创建一个相应大小的零矩阵。接着,我们遍历原始边列表,根据每条边的两个节点,将对应的矩阵元素设为 1。最终得到的矩阵就是我们所需的邻接矩阵。

让我们来看看如何用Python代码实现这一过程:

def edges_to_adjacency_matrix(edges):# 找到图中节点的数量max_node = max(max(edge) for edge in edges) + 1# 创建零矩阵adjacency_matrix = [[0] * max_node for _ in range(max_node)]# 遍历原始边列表,更新邻接矩阵for edge in edges:adjacency_matrix[edge[0]][edge[1]] = 1adjacency_matrix[edge[1]][edge[0]] = 1  # 如果是无向图,边是双向的return adjacency_matrix# 测试
edges = [(0, 1), (0, 2), (1, 2), (2, 3)]
adjacency_matrix = edges_to_adjacency_matrix(edges)
for row in adjacency_matrix:print(row)

在这段代码中,edges_to_adjacency_matrix 函数接受原始边列表作为参数,并返回对应的邻接矩阵。然后我们对给定的边列表进行了测试,并输出了生成的邻接矩阵。

扩展和优化

虽然上述代码能够完成原始边列表到邻接矩阵的转换,但在实际应用中可能需要进行一些扩展和优化。

  1. 处理有向图和无向图:目前的代码默认处理无向图,如果是有向图,需要根据具体需求修改代码,只在一个方向上设置邻接关系。

  2. 处理权重:有时边不仅仅是存在与否的关系,还可能有权重。修改代码以支持带权重的图。

  3. 使用稀疏矩阵:对于大型图,邻接矩阵可能会占用大量内存,可以考虑使用稀疏矩阵来节省内存空间。

  4. 性能优化:对于大规模的边列表,需要考虑代码的性能。可以尝试使用更高效的数据结构或算法来实现转换过程。

下面是对代码的一些优化示例:

import numpy as npdef edges_to_adjacency_matrix(edges, directed=False):max_node = max(max(edge) for edge in edges) + 1adjacency_matrix = np.zeros((max_node, max_node))for edge in edges:if directed:adjacency_matrix[edge[0]][edge[1]] = 1else:adjacency_matrix[edge[0]][edge[1]] = 1adjacency_matrix[edge[1]][edge[0]] = 1return adjacency_matrix# 测试
edges = [(0, 1), (0, 2), (1, 2), (2, 3)]
adjacency_matrix = edges_to_adjacency_matrix(edges)
print("无向图的邻接矩阵:")
print(adjacency_matrix)directed_edges = [(0, 1), (0, 2), (1, 2), (2, 3)]
directed_adjacency_matrix = edges_to_adjacency_matrix(directed_edges, directed=True)
print("\n有向图的邻接矩阵:")
print(directed_adjacency_matrix)

在优化后的代码中,我们使用了NumPy库来创建和操作矩阵,这可以提高代码的性能和可读性。同时,我们添加了一个参数 directed 来指示图的类型,从而支持有向图和无向图的转换。

使用稀疏矩阵优化内存占用

在处理大型图时,邻接矩阵可能会变得非常稀疏,其中大部分元素都是零。为了优化内存占用,可以使用稀疏矩阵来表示邻接关系。

Python中有多种库可以处理稀疏矩阵,其中Scipy库提供了稀疏矩阵的各种操作和算法。让我们来看看如何使用Scipy中的稀疏矩阵来优化代码:

import numpy as np
from scipy.sparse import lil_matrixdef edges_to_adjacency_matrix(edges, directed=False):max_node = max(max(edge) for edge in edges) + 1adjacency_matrix = lil_matrix((max_node, max_node), dtype=np.int8)for edge in edges:if directed:adjacency_matrix[edge[0], edge[1]] = 1else:adjacency_matrix[edge[0], edge[1]] = 1adjacency_matrix[edge[1], edge[0]] = 1return adjacency_matrix# 测试
edges = [(0, 1), (0, 2), (1, 2), (2, 3)]
adjacency_matrix = edges_to_adjacency_matrix(edges)
print("无向图的邻接矩阵:")
print(adjacency_matrix.toarray())directed_edges = [(0, 1), (0, 2), (1, 2), (2, 3)]
directed_adjacency_matrix = edges_to_adjacency_matrix(directed_edges, directed=True)
print("\n有向图的邻接矩阵:")
print(directed_adjacency_matrix.toarray())

在这个版本的代码中,我们使用了 scipy.sparse.lil_matrix 来创建稀疏矩阵。它能够有效地处理大型稀疏矩阵,并且只存储非零元素,从而节省内存。

通过这种优化,我们可以处理更大规模的图数据,而不会因为内存占用过高而导致性能下降或内存不足的问题。

处理带权重的边列表

在某些情况下,图的边不仅仅表示节点之间的连接关系,还可能有权重信息。例如,在交通网络中,边可以表示道路,而权重可以表示道路的长度或通行时间。

让我们来看看如何修改代码,以支持带权重的边列表:

import numpy as np
from scipy.sparse import lil_matrixdef edges_to_adjacency_matrix(edges, directed=False, weighted=False):max_node = max(max(edge[0], edge[1]) for edge in edges) + 1adjacency_matrix = lil_matrix((max_node, max_node), dtype=np.float32)for edge in edges:if directed:if weighted:adjacency_matrix[edge[0], edge[1]] = edge[2]else:adjacency_matrix[edge[0], edge[1]] = 1else:if weighted:adjacency_matrix[edge[0], edge[1]] = edge[2]adjacency_matrix[edge[1], edge[0]] = edge[2]else:adjacency_matrix[edge[0], edge[1]] = 1adjacency_matrix[edge[1], edge[0]] = 1return adjacency_matrix# 测试
weighted_edges = [(0, 1, 5), (0, 2, 3), (1, 2, 2), (2, 3, 7)]
weighted_adjacency_matrix = edges_to_adjacency_matrix(weighted_edges, weighted=True)
print("带权重的邻接矩阵:")
print(weighted_adjacency_matrix.toarray())

在这个版本的代码中,我们添加了一个 weighted 参数来指示边是否带有权重。如果 weighted 参数为 True,则从边列表中提取权重信息,并将其保存到邻接矩阵中。否则,邻接矩阵中的值仍然表示边的存在与否。

通过这种修改,我们可以处理带有权重信息的图数据,并在邻接矩阵中保留这些信息,以便进行后续的分析和计算。

图的可视化

在处理图数据时,可视化是一种强大的工具,它可以帮助我们直观地理解图的结构和特征。Python中有许多库可以用来可视化图数据,其中NetworkX是一个常用的库,它提供了丰富的功能来创建、操作和可视化图。

让我们来看看如何使用NetworkX来可视化我们生成的邻接矩阵:

import networkx as nx
import matplotlib.pyplot as pltdef visualize_adjacency_matrix(adjacency_matrix):G = nx.from_numpy_matrix(adjacency_matrix)pos = nx.spring_layout(G)  # 定义节点位置nx.draw(G, pos, with_labels=True, node_color='skyblue', node_size=500, font_size=10)  # 绘制图edge_labels = {(i, j): w['weight'] for i, j, w in G.edges(data=True)}  # 获取边权重nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=10)  # 绘制边权重plt.title("Graph Visualization")plt.show()# 测试
weighted_edges = [(0, 1, 5), (0, 2, 3), (1, 2, 2), (2, 3, 7)]
weighted_adjacency_matrix = edges_to_adjacency_matrix(weighted_edges, weighted=True)
print("带权重的邻接矩阵:")
print(weighted_adjacency_matrix.toarray())visualize_adjacency_matrix(weighted_adjacency_matrix.toarray())

在这段代码中,我们首先使用NetworkX的 from_numpy_matrix 函数将邻接矩阵转换为图对象。然后使用 spring_layout 定义节点的位置,并使用 draw 函数绘制图。最后,我们使用 draw_networkx_edge_labels 函数绘制边的权重。

通过可视化,我们可以清晰地看到图的结构,并直观地了解节点之间的连接关系和权重信息。

邻接矩阵转换为原始边列表

在图数据处理中,有时候我们需要将邻接矩阵转换回原始的边列表形式。这在某些算法和应用中可能很有用,因为一些算法可能更适合使用边列表来表示图。

让我们看看如何编写代码来实现这一转换:

import numpy as npdef adjacency_matrix_to_edges(adjacency_matrix):edges = []for i in range(adjacency_matrix.shape[0]):for j in range(adjacency_matrix.shape[1]):if adjacency_matrix[i, j] != 0:edges.append((i, j, adjacency_matrix[i, j]))return edges# 测试
adjacency_matrix = np.array([[0, 1, 0, 0],[1, 0, 1, 0],[0, 1, 0, 1],[0, 0, 1, 0]], dtype=np.float32)
print("原始邻接矩阵:")
print(adjacency_matrix)edges = adjacency_matrix_to_edges(adjacency_matrix)
print("\n转换后的边列表:")
print(edges)

在这段代码中,我们遍历邻接矩阵的每个元素,如果元素的值不为零,则将其转换为边列表中的一条边。对于有权重的图,我们将权重信息也一并保存在边列表中。

通过这个转换过程,我们可以将邻接矩阵表示的图转换为边列表形式,从而方便进行一些算法的实现和应用。

总结与展望

本文介绍了如何使用Python将原始边列表转换为邻接矩阵,并进行了一系列的扩展和优化,以满足不同场景下的需求。我们从处理无向图和有向图、带权重的边列表,到使用稀疏矩阵优化内存占用,再到图的可视化和邻接矩阵转换为原始边列表,覆盖了图数据处理的多个方面。

在实际应用中,图数据处理是一个非常重要且广泛应用的领域,涉及到网络分析、社交网络、交通规划、生物信息学等诸多领域。掌握图数据处理的技能,能够帮助我们更好地理解和分析复杂的数据结构,从而解决实际问题。

未来,随着数据规模的不断增大和复杂性的增加,图数据处理领域将面临更多挑战和机遇。我们可以期待更多高效、灵活和功能丰富的工具和算法的出现,以应对不断变化的需求和挑战。同时,我们也可以持续学习和探索,不断提升自己在图数据处理领域的能力和水平,为解决实际问题做出更大的贡献。

希望本文对你理解和应用图数据处理有所帮助,也欢迎你进一步深入学习和探索这个领域,为数据科学和工程的发展贡献力量。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2979340.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

MATLAB中normxcorr2函数的用法(模板匹配和对象识别)

normxcorr2 是 MATLAB 中的一个函数,用于计算两个矩阵的归一化互相关。这个函数在图像处理和计算机视觉中特别有用,尤其是在模板匹配和对象识别方面。 函数签名 在 MATLAB 中,normxcorr2 函数的基本调用形式如下: C normxcorr…

虚拟现实(VR)的应用场景

虚拟现实(VR)技术创建和体验三维虚拟世界的计算机仿真技术。用户通过佩戴VR头显等设备,可以完全沉浸在虚拟世界中,并与虚拟世界中的物体进行交互。VR技术具有广泛的应用前景,可以应用于各行各业。以下是一些VR的应用场…

海康智能相机FTP本地存图流程

背景:近期一个新项目需要使用到智能相机,借助智能相机算法直接输出检测结果并将相机图像进行本地化保存和展示。由于申购目标智能相机未到,暂时使用测试智能相机。 目标智能相机型号:海康智能相机MV-SC3050XC 当前测试相机型号…

【Applied Algebra】隐藏子群问题和Shor算法的新视角

隐藏子群问题和Shor算法的新视角 隐藏子群问题是指给定一个群和一个函数,该函数对于群的一个子群是常数,并且对于子群的任何两个不同的左陪集有不同的值,问题是找到这个子群.HSP是许多量子算法的基础,其中最著名的是Shor的算法,它可以用来分解大整数和计算离散对数,这直接威胁到…

【sping】在logback-spring.xml 获取项目名称

在日志文件中我们想根据spring.application.name 创建出的文件夹。 也不想死在XML文件中。 application.yml spring:application:name: my-demo logback-spring.xml <springProperty name"application_name" scope"context" source"spring.app…

【Redis】Zset 数据类型

文章目录 常用命令zaddzcard & zcountzrange & zrevrangezpopmax & bzpopmaxzpopmin & bzpopminzrank & zrevrankzscore & zremzremrangebyrank & zremrangebyscorezincrby 多个集合间的交互命令交集 & zinterstore并集 & sunionstore 内部…

淘宝客链接转换接口阿里妈妈佣金转换:功能、使用与优缺点详解

淘宝客链接转换接口详解 随着互联网的发展&#xff0c;电子商务行业日益繁荣&#xff0c;淘宝作为国内最大的电商平台之一&#xff0c;其链接转换接口也受到了广泛关注。淘宝客链接转换接口是一种将淘宝商品链接转换成特定形式的短链接或推广链接的工具&#xff0c;方便用户进…

模版初阶【C++】

✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅✅ ✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨✨ &#x1f33f;&#x1f33f;&#x1f33f;&#x1f33f;&#x1f33f;&#x1f33f;&#x1f33f;&#x1f33f;&#x1f33f;&#x1f33f;&#x1f33f;&#x1f33f;&#x1f33f;&#x1f33f;&#x1…

AI人工智能培训老师叶梓:大数据治理的关键工具:开源数据血缘分析系统

在大数据时代&#xff0c;数据的产生和传播速度日益加快&#xff0c;数据之间的关系也变得日益复杂。为了更好地管理和理解数据之间的关系&#xff0c;数据血缘分析系统应运而生。本文将介绍几个开源的数据血缘分析系统&#xff0c;它们在数据治理、数据质量管理和数据隐私保护…

Apache Answer 开源问答社区安装体验

Answer 是由 SegmentFault 思否团队打造的一款问答平台软件,后端使用 Go 语言编写,于2022年10月24日(程序员节)正式开源。你可以免费使用 Answer 高效地搭建一个问答社区,并用于产品技术问答、客户支持、用户交流等场景。 2023年10月9日,Answer 顺利通过投票,以全票通过…

自己写的爬虫小案例

网址&#xff1a;aHR0cDovL2pzc2NqZ3B0Lmp4d3JkLmdvdi5jbi8/dXJsPS92aWV3L3dvcmtpbmdVbml0L3dvcmtpbmdVbml0Lmh0bWw 这串代码能够爬取勘察单位企业的详细信息。 import requests import time import csv f open(勘察单位公司信息.csv,w,encodingutf-8,newline) csv_writer …

详解QString与QByteArray使用对比

QString与QByteArray是Qt库中两种不同的字符串/字节序列容器&#xff0c;各自服务于特定的应用场景。本篇文章将详细解析它们的异同&#xff0c;帮助您在实际编程中准确选择和有效地使用这两种类型。 参考 QString类的使用 相同之处 构造与初始化&#xff1a; 两者都支持直接使…

2024深圳杯东三省A题全保姆教程 多个火箭残骸的准确定位

A题 多个火箭残骸的准确定位 问题1 &#xff1a;建立数学模型&#xff0c;分析如果要精准确定空中单个残骸发生音爆时的位置坐标&#xff08;经度、纬度、高程&#xff09;和时间&#xff0c;至少需要布置几台监测设备&#xff1f;假设某火箭一级残骸分离后&#xff0c;在落点附…

面试算法题之暴力求解

这里写目录标题 1 回溯1.1 思路及模板1.1 plus 排列组合子集问题1.2 例题1.2.1 全排列1.2.2 N 皇后1.2.3 N皇后问题 II1.2.4 子集 &#xff08;子集/排列问题&#xff09;1.2.4 组合(组合/子集问题)1.2.5 全排列 &#xff08;排列问题&#xff09;1.2.1做过1.2.6 子集II &#…

金融时报:波场亮相哈佛大学并举办TRON Builder Tour活动

近日,波场TRON作为顶级白金赞助商出席哈佛区块链会议并成功举办TRON Builder Tour哈佛站活动,引发海外媒体热议。美联社、金融时报、Cointelegraph等国际主流媒体及加密知名媒体均对此给予了高度评价,认为本次大会对TRON Builder Tour活动具有里程碑意义,彰显了波场TRON致力于促…

Linux加强篇-Vim编辑器

目录 ⛳️推荐 Vim文本编辑器 编写简单文档 配置主机名称 配置网卡信息 配置软件仓库 ⛳️推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站 Vim文本编辑器 在Linux系统中一切都…

windows10小皮安装不同版本composer,实现自由切换使用

1、使用phpstudy小皮面板安装composer1.8.5和composer2.5.8两个版本&#xff1b; 2、打开刚才安装的composer安装目录&#xff1a;D:\phpstudy_pro\Extensions 3、打开composer1.8.5版本&#xff0c;修改composer.bat名称为composer1.8.5.bat&#xff1a; 4、打开composer2.5.8…

8【PS作图】画一个“像素云朵”

选择64*128像素大小&#xff0c;横向画布 选择“油漆桶”工具&#xff0c;“容差”调整为0&#xff0c;取消“锯齿”&#xff0c;勾选“连续的”&#xff0c;这样方便后续上色&#xff0c;并且边缘都是像素风格的锯齿状 点击画布&#xff0c;变成蓝色天空 画云朵&#xff0c;首…

Docker镜像与容器的命令与基本操作

目录 一、docker基本命令 1、查看镜像 2、查看所有容器的状态 3、docker的run指令 4、run的工作流程 5、查看docker版本的命令 6、查看docker信息 7、docker帮助命令文档 二、docker镜像操作 1、搜索镜像&#xff08;公共仓库&#xff09; 2、下载镜像 3、查看镜像…

springcloud第4季 springcloud-alibaba之sentinel

一 sentinel介绍 1.1 sentinel作用 sentinel是面向分布式、多语言异构化服务架构的流量治理组件&#xff0c;主要以流量为切入点&#xff0c;从流量路由、流量控制、熔断降级、系统自适应过载保护、热点流量防护等多个维度来帮助开发者保障服务的稳定性。 1.2 组成部分 sen…