面试算法题之暴力求解

这里写目录标题

  • 1 回溯
    • 1.1 思路及模板
    • 1.1 plus 排列组合子集问题
    • 1.2 例题
      • 1.2.1 全排列
      • 1.2.2 N 皇后
      • 1.2.3 N皇后问题 II
      • 1.2.4 子集 (子集/排列问题)
      • 1.2.4 组合(组合/子集问题)
      • 1.2.5 全排列 (排列问题)1.2.1做过
      • 1.2.6 子集II (可重复元素的组合/子集)
      • 1.2.7 排列组合II
      • 1.2.7 全排列 II (排列题型)
      • 1.2.8 组合总和 (子集/组合(元素无重可复选))
      • 1.2.9 排列(元素无重可复选)

1 回溯

1.1 思路及模板

抽象地说,解决一个回溯问题,实际上就是遍历一棵决策树的过程,树的每个叶子节点存放着一个合法答案。你把整棵树遍历一遍,把叶子节点上的答案都收集起来,就能得到所有的合法答案。

站在回溯树的一个节点上,你只需要思考 3 个问题:
1、路径:也就是已经做出的选择。
2、选择列表:也就是你当前可以做的选择。
3、结束条件:也就是到达决策树底层,无法再做选择的条件。

回溯算法的框架如下:

result = []
def backtrack(路径, 选择列表):if 满足结束条件:result.add(路径)returnfor 选择 in 选择列表:做选择backtrack(路径, 选择列表)撤销选择

更具体的,在下面的例子中,对于遍历到红色节点来说,现在可以解答开头的几个名词:[2] 就是「路径」,记录你已经做过的选择;[1,3] 就是「选择列表」,表示你当前可以做出的选择;「结束条件」就是遍历到树的底层叶子节点,这里也就是选择列表为空的时候。
在这里插入图片描述
如果明白了这几个名词,可以把「路径」和「选择」列表作为决策树上每个节点的属性,比如下图列出了几个蓝色节点的属性:
在这里插入图片描述
函数在树上游走要正确处理节点的属性,那么就要在这两个特殊时间点搞点动作:
在这里插入图片描述
再来理解下回溯框架:

for 选择 in 选择列表:# 做选择将该选择从选择列表移除路径.add(选择)backtrack(路径, 选择列表)# 撤销选择路径.remove(选择)将该选择再加入选择列表

1.1 plus 排列组合子集问题

无论是排列、组合还是子集问题,简单说无非就是让你从序列 nums 中以给定规则取若干元素
在这里插入图片描述
在这里插入图片描述

1.2 例题

1.2.1 全排列

给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。

示例 1:
输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
示例 2:
输入:nums = [0,1]
输出:[[0,1],[1,0]]
示例 3:
输入:nums = [1]
输出:[[1]]

思路以及代码
在这里插入图片描述

1、路径:走过的记录在track中。
2、选择列表:used[] 为false表示没走过,可以选择。
3、结束条件:track.size == nums.length 表示到达了叶子节点,可以退出。

class Solution {//存放结果List<List<Integer>> res = new LinkedList();public List<List<Integer>> permute(int[] nums) {List<Integer> track = new LinkedList();boolean[] used = new boolean[nums.length];backtrack(nums,track,used);return res;}// 路径:记录在 track 中// 选择列表:nums 中不存在于 track 的那些元素(used[i] 为 false)// 结束条件:nums 中的元素全都在 track 中出现public void backtrack(int[] nums,List<Integer> track,boolean[] used){//当该条路径的track和nums元素相同,也就是已经走到了叶子节点,退出if(track.size() == nums.length){res.add(new LinkedList(track));return ;}for(int i = 0;i<nums.length;i++){//排除不合法if(used[i]){continue;}//做选择track.add(nums[i]);used[i] = true;//进入下一层决策树backtrack(nums,track,used);//退出track.removeLast();used[i] = false;}}
}

1.2.2 N 皇后

按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。
n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。
每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。

示例:
在这里插入图片描述
输入:n = 4
输出:[[“.Q…”,“…Q”,“Q…”,“…Q.”],[“…Q.”,“Q…”,“…Q”,“.Q…”]]
解释:如上图所示,4 皇后问题存在两个不同的解法。

思路以及代码:
这个问题本质上跟全排列问题差不多,决策树的每一层表示棋盘上的每一行;每个节点可以做出的选择是,在该行的任意一列放置一个皇后。
路径:board中小于row的行都已经放置了Q
选择列表:board中第row行的所有列都可以选择
结束条件:当超过了最后一行,也就是row = board.size()

class Solution {
public://存放结果vector<vector<string>> res;vector<vector<string>> solveNQueens(int n) {// vector<string> 代表一个棋盘// '.' 表示空,'Q' 表示皇后,初始化空棋盘vector<string> board(n, string(n, '.'));backtrack(board, 0);return res;}//路径:board中小于row的行都已经放置了Q//选择列表:board中第row行的所有列都可以选择//结束条件:当超过了最后一行,也就是row = board.size()void backtrack(vector<string>& board,int row){if(board.size() == row){res.push_back(board);return;}int n = board[row].size();for(int col = 0;col<n;col++){// 排除不合法选择if (!isValid(board, row, col)) {continue;}// 做选择board[row][col] = 'Q';// 进入下一行决策backtrack(board, row + 1);// 撤销选择board[row][col] = '.';}}//输入棋盘board,判断第row行的第col列是否可以放Q?bool isValid(vector<string> board,int row,int col){int n = board.size();//检查同一列是否有冲突for(int i = 0;i<=row;i++){if(board[i][col] == 'Q'){return false;}}//检查右上for(int i = row - 1,j = col + 1;i >= 0 && j < n;i--,j++){if(board[i][j] == 'Q'){return false;}}//检查左上for(int i = row - 1,j = col - 1;i>=0 && j>=0;i--,j--){if(board[i][j] == 'Q'){return false;}}return true;}
};

1.2.3 N皇后问题 II

n 皇后问题 研究的是如何将 n 个皇后放置在 n × n 的棋盘上,并且使皇后彼此之间不能相互攻击。
给你一个整数 n ,返回 n 皇后问题 不同的解决方案的数量。
在这里插入图片描述
输入:n = 4
输出:2
解释:如上图所示,4 皇后问题存在两个不同的解法。

思路以及代码:
这道题和N皇后几乎一样,只需要将N皇后的退出返回数组改为退出res++即可,如下所示:

        if(board.size() == row){res++;return;}

1.2.4 子集 (子集/排列问题)

给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。
解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。

示例 1:
输入:nums = [1,2,3]
输出:[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]
示例 2:
输入:nums = [0]
输出:[[],[0]]

思路以及代码:
这其实是一个小学问题,nums = [1,2,3],那么怎么获取它的子集?
首先考虑空集[],接着在空集的基础上衍生出一个元素的子集:
在这里插入图片描述
再接着,再[1],[2]上衍生出两个元素的子集:
在这里插入图片描述
最后只有[1,2]可以继续衍生出三个元素的子集:
在这里插入图片描述
如果把根节点作为第 0 层,将每个节点和根节点之间树枝上的元素作为该节点的值,那么第 n 层的所有节点就是大小为 n 的所有子集。
这里让我们求所有的节点,可以理解为求解组合树的所有节点

class Solution {List<List<Integer>> res = new ArrayList();List<Integer> track = new ArrayList();public List<List<Integer>> subsets(int[] nums) {backtrack(nums,0);return res;}//路径 由track记录//路径列表 比当前节点val大的值//结束条件 start == nums.lengthvoid backtrack(int[] nums,int start){res.add(new ArrayList(track));for(int i = start;i<nums.length;i++){track.add(nums[i]);backtrack(nums,i+1);track.removeLast();}}
}

1.2.4 组合(组合/子集问题)

给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。
你可以按 任何顺序 返回答案。
示例 1:

输入:n = 4, k = 2
输出:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]
示例 2:
输入:n = 1, k = 1
输出:[[1]]

提示:
1 <= n <= 20
1 <= k <= n

思路以及代码:
这道题和上面那个子集几乎一样,只是给了k并且不考虑空集

class Solution {List<List<Integer>> res = new ArrayList();List<Integer> track = new ArrayList();public List<List<Integer>> combine(int n, int k) {backtrack(n,k,1);return res;}// 路径 track// 选择集合 比当前节点val大的// 结束条件 track.size == kpublic void backtrack(int n,int k,int start){if(track.size() == k){res.add(new ArrayList(track));return ;}for(int i = start;i<=n;i++){track.add(i);backtrack(n,k,i+1);track.removeLast();}}
}

1.2.5 全排列 (排列问题)1.2.1做过

给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。

示例 1:
输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
示例 2:
输入:nums = [0,1]
输出:[[0,1],[1,0]]
示例 3:
输入:nums = [1]
输出:[[1]]

在这里插入图片描述
对于排列问题,只需要用 used 数组标记已经在路径上的元素避免重复选择,然后收集所有叶子节点上的值,就是所有全排列的结果。

1.2.6 子集II (可重复元素的组合/子集)

给你一个整数数组 nums ,其中可能包含重复元素,请你返回该数组所有可能的子集(幂集)。
解集 不能 包含重复的子集。返回的解集中,子集可以按 任意顺序 排列。

示例 1:
输入:nums = [1,2,2]
输出:[[],[1],[1,2],[1,2,2],[2],[2,2]]
示例 2:
输入:nums = [0]
输出:[[],[0]]

代码以及思路:
这道题首先两个点:

  • 给出的集合可以无序:
    说明你要先给nums排序

  • 给出的nums可以有重复,但是子集不可以重复(例如nums=[1,2,2] 子集里可以出现[2,2],但是不能出现两个[2]):
    需要剪纸,剪纸时机:同一层出现两个val相同的结点

在这里插入图片描述

class Solution {List<List<Integer>> res = new ArrayList();List<Integer> track = new ArrayList();public List<List<Integer>> subsetsWithDup(int[] nums) {Arrays.sort(nums);backtrack(nums,0);return res;}//路径 track//路径选择 当同层出现相同val节点,不进行选择//结束 遍历完成public void backtrack(int[] nums,int start){res.add(new ArrayList(track));for(int i = start;i<nums.length;i++){//当同层出现相同val节点,进行剪纸if(i > start && nums[i] == nums[i-1]){continue;}track.add(nums[i]);backtrack(nums,i+1);track.removeLast();}}
}

1.2.7 排列组合II

给定一个候选人编号的集合 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
candidates 中的每个数字在每个组合中只能使用 一次 。
注意:解集不能包含重复的组合。

示例 1:
输入: candidates = [10,1,2,7,6,1,5], target = 8,
输出:
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]
示例 2:
输入: candidates = [2,5,2,1,2], target = 5,
输出:
[
[1,2,2],
[5]
]

思路以及代码:
这道题就是集合有重复元素 且 让子集和为target
做法很简单,保证子集不出现重复子集的情况下,只要额外用一个 trackSum 变量记录回溯路径上的元素和

class Solution {List<List<Integer>> res = new ArrayList();List<Integer> track = new ArrayList();int tracksum = 0;public List<List<Integer>> combinationSum2(int[] candidates, int target) {if(candidates.length == 0){return res;}Arrays.sort(candidates);backtrack(candidates,target,0);return res;}void backtrack(int[] candidates,int target,int start){if(tracksum == target){res.add(new ArrayList(track));return ;}if(tracksum > target){return ;}for(int i = start;i<candidates.length;i++){if(i > start && candidates[i] == candidates[i-1]){continue;}track.add(candidates[i]);tracksum+=candidates[i];backtrack(candidates,target,i+1);track.removeLast();tracksum-=candidates[i];}}
}

1.2.7 全排列 II (排列题型)

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。

示例 1:
输入:nums = [1,1,2]
输出:
[[1,1,2],
[1,2,1],
[2,1,1]]
示例 2:
输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

思路以及代码:
对比一下之前的标准全排列解法代码,这段解法代码只有两处不同:
1、对 nums 进行了排序。
2、添加了一句额外的剪枝逻辑。

这里的剪纸很有讲究:
相同元素在排列中的相对位置保持不变。
比如说 nums = [1,2,2’] 这个例子,我保持排列中 2 一直在 2’ 前面。
当出现重复元素时,比如输入 nums = [1,2,2’,2’‘],2’ 只有在 2 已经被使用的情况下才会被选择,同理,2’’ 只有在 2’ 已经被使用的情况下才会被选择,这就保证了相同元素在排列中的相对位置保证固定。
在这里插入图片描述

// 新添加的剪枝逻辑,固定相同的元素在排列中的相对位置
if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]) {// 如果前面的相邻相等元素没有用过,则跳过continue;
}
// 选择 nums[i]
class Solution {List<List<Integer>> res = new ArrayList();List<Integer> track = new ArrayList();boolean[] used;public List<List<Integer>> permuteUnique(int[] nums) {Arrays.sort(nums);used = new boolean[nums.length];backtrack(nums);return res;}void backtrack(int[] nums){if(track.size() == nums.length){res.add(new ArrayList(track));return;}for(int i = 0;i<nums.length;i++){if(used[i] == true){continue;}//因为集合中有重复元素 所以剪枝 !!!固定相同的元素在排列中的相对位置if(i > 0 && nums[i] == nums[i-1] && !used[i-1]){continue;}used[i] = true;track.add(nums[i]);backtrack(nums);track.removeLast();used[i] = false;}}
}

1.2.8 组合总和 (子集/组合(元素无重可复选))

给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。
candidates 中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。
对于给定的输入,保证和为 target 的不同组合数少于 150 个。

示例 1:
输入:candidates = [2,3,6,7], target = 7
输出:[[2,2,3],[7]]
解释:
2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。
7 也是一个候选, 7 = 7 。
仅有这两种组合。
示例 2:
输入: candidates = [2,3,5], target = 8
输出: [[2,2,2,2],[2,3,3],[3,5]]
示例 3:
输入: candidates = [2], target = 1
输出: []

代码和思路:
首先我们回顾下,普通的子集/组合如何防止重复使用集合的元素?
控制进入下一层递归树的元素,也就是这个 i 从 start 开始,那么下一层回溯树就是从 start + 1 开始,从而保证 nums[start] 这个元素不会被重复使用:

// 无重组合的回溯算法框架
void backtrack(int[] nums, int start) {for (int i = start; i < nums.length; i++) {// ...// 递归遍历下一层回溯树,注意参数backtrack(nums, i + 1);// ...}
}

在这里插入图片描述

因此,如果要是可以选择重复元素的话,只要把 i + 1 改成 i 即可:

// 可重组合的回溯算法框架
void backtrack(int[] nums, int start) {for (int i = start; i < nums.length; i++) {// ...// 递归遍历下一层回溯树,注意参数backtrack(nums, i);// ...}
}

在这里插入图片描述
总代码:

class Solution {List<List<Integer>> res = new ArrayList();List<Integer> track = new ArrayList();int tracksum = 0;public List<List<Integer>> combinationSum(int[] candidates, int target) {trackback(candidates,target,0);return res;}public void trackback(int[] nums,int target,int start){if(tracksum == target){res.add(new ArrayList(track));return ;}if(tracksum > target){return ;}for(int i = start;i<nums.length;i++){tracksum += nums[i];track.add(nums[i]);trackback(nums,target,i);tracksum -= nums[i];track.removeLast();}}
}

1.2.9 排列(元素无重可复选)

以此类推,标准的全排列算法利用 used 数组进行剪枝,避免重复使用同一个元素。如果允许重复使用元素的话,直接放飞自我,去除所有 used 数组的剪枝逻辑就行了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2979316.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

金融时报:波场亮相哈佛大学并举办TRON Builder Tour活动

近日,波场TRON作为顶级白金赞助商出席哈佛区块链会议并成功举办TRON Builder Tour哈佛站活动,引发海外媒体热议。美联社、金融时报、Cointelegraph等国际主流媒体及加密知名媒体均对此给予了高度评价,认为本次大会对TRON Builder Tour活动具有里程碑意义,彰显了波场TRON致力于促…

Linux加强篇-Vim编辑器

目录 ⛳️推荐 Vim文本编辑器 编写简单文档 配置主机名称 配置网卡信息 配置软件仓库 ⛳️推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站 Vim文本编辑器 在Linux系统中一切都…

windows10小皮安装不同版本composer,实现自由切换使用

1、使用phpstudy小皮面板安装composer1.8.5和composer2.5.8两个版本&#xff1b; 2、打开刚才安装的composer安装目录&#xff1a;D:\phpstudy_pro\Extensions 3、打开composer1.8.5版本&#xff0c;修改composer.bat名称为composer1.8.5.bat&#xff1a; 4、打开composer2.5.8…

8【PS作图】画一个“像素云朵”

选择64*128像素大小&#xff0c;横向画布 选择“油漆桶”工具&#xff0c;“容差”调整为0&#xff0c;取消“锯齿”&#xff0c;勾选“连续的”&#xff0c;这样方便后续上色&#xff0c;并且边缘都是像素风格的锯齿状 点击画布&#xff0c;变成蓝色天空 画云朵&#xff0c;首…

Docker镜像与容器的命令与基本操作

目录 一、docker基本命令 1、查看镜像 2、查看所有容器的状态 3、docker的run指令 4、run的工作流程 5、查看docker版本的命令 6、查看docker信息 7、docker帮助命令文档 二、docker镜像操作 1、搜索镜像&#xff08;公共仓库&#xff09; 2、下载镜像 3、查看镜像…

springcloud第4季 springcloud-alibaba之sentinel

一 sentinel介绍 1.1 sentinel作用 sentinel是面向分布式、多语言异构化服务架构的流量治理组件&#xff0c;主要以流量为切入点&#xff0c;从流量路由、流量控制、熔断降级、系统自适应过载保护、热点流量防护等多个维度来帮助开发者保障服务的稳定性。 1.2 组成部分 sen…

混合云构建-如何创建一个高可用的Site to Site VPN 连接 Azure 和GCP云

在现代云计算环境中,企业通常会采用多云战略,将工作负载分布在不同的云服务提供商上。这种方式可以提高可用性、降低供应商锁定风险,并利用每个云提供商的独特优势。然而,在这种情况下,需要确保不同云环境之间的互联互通,以实现无缝的数据传输和应用程序集成。 本文将详细介绍…

基于WOA优化的CNN-GRU-Attention的时间序列回归预测matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1卷积神经网络&#xff08;CNN&#xff09;在时间序列中的应用 4.2 GRU网络 4.3 注意力机制&#xff08;Attention&#xff09; 4.4 WOA优化算法 5.算法完整程序工程 1.算法运行效果图…

SwiftUI 5.0(iOS 17.0)触摸反馈“震荡波”与触发器模式趣谈

概览 要想创作出一款精彩绝伦的 App&#xff0c;绚丽的界面和灵动的动画并不是唯一吸引用户的要素。有时我们还希望让用户真切的感受到操作引发的触觉反馈&#xff0c;直击使用者的灵魂。 所幸的是新版 SwiftUI 原生提供了实现触觉震动反馈的机制。在介绍它之后我们还将进一步…

android学习笔记(二)

1、自定义View。 package com.example.view; import android.content.Context; import android.graphics.Canvas; import android.graphics.Color; import android.graphics.Paint; import android.util.AttributeSet; import android.view.View; //可以在View测量和布局完成后…

idea 通过maven构建无法使用@SpringBootApplication

问题描述 SpringBootApplication标红&#xff0c;没有提示&#xff0c;无法启动springboot使用maven构建。通过idea的标准版本构建 原因 springboot构建启动依赖spring-boot-maven-plugin idea的标准版本没有指定构建版本&#xff0c;然后在springboot-parent里面没有指定默…

云原生的基石:containerd引领未来容器发展趋势

文章目录 一、Containerd简介&#xff1a;容器技术的心脏二、Containerd核心原理解析三、Containerd与Docker的关系四、Containerd在云原生应用部署中的作用五、Containerd的扩展性和插件机制六、Containerd的安全特性七、Containerd的性能优化八、Containerd的社区和生态系统九…

Git 仓库内容操作

Git 仓库内容操作 | CoderMast编程桅杆Git 仓库内容操作 添加文件到暂存区 使用如下指令将工作区的文件添加到暂存区&#xff0c;告诉 Git 在下次 commit 时哪些文件做出了修改。 commit 指令详看后续 添加一个或多个文件到暂存区&#xff1a; 添加指定目录到暂存区 添加当前目…

uniapp制作多选下拉框和富文本(短信页面)

实例 多选下拉框实现 http://t.csdnimg.cn/TNmcF 富文本实现 http://t.csdnimg.cn/Ei1iV

C++面向对象程序设计 - 运算符重载

函数重载就是对一个已有的函数赋予新的含义&#xff0c;使之实现新的功能。因此一个函数名就可以用来代表不同功能的函数&#xff0c;也就是一名多用。运算符也可以重载&#xff0c;即运算符重载&#xff08;operator overloading&#xff09;。 一、运算符重载的方法 运算符重…

node+vue3的websocket前后端消息推送

nodevue3的websocket前后端消息推送 前期写web项目时&#xff0c;前端获取数据的方式一般是向后端发起数据请求&#xff0c;然后后端向前端发送数据&#xff0c;然后对数据进行渲染&#xff0c;这是最常规的一种数据通讯方式&#xff0c;适用于绝大部分前后端分离的项目 实际…

autodesk系列软件安装错误1603,手动安装Autodesk Desktop Licensing Service之后,启动服务提示错误1067

一般Autodesk Desktop Licensing Service这个服务没安装或者不正常会导致autodesk系列软件安装错误1603或者其他报错。 手动安装Autodesk Desktop Licensing Service之后&#xff0c;启动服务提示错误1067&#xff0c; 解决方法如下 打开autoremove点击扩展功能&#xff0c;输…

idea上传项目到gitee(码云)

1、打开码云&#xff0c;新建仓库 2、创建 3、这就是创建成功的页面 4、复制仓库地址&#xff0c;后面需要用到 2、打开我们的项目&#xff1a;例如我现在的项目 1、idea创建git仓库 2、选择我们项目文件夹的目录 3、查看文件是否变色&#xff0c;变色表示成功了 4、添加到缓…

广东理工学院携手泰迪智能科技成功部署人工智能实验室

广东理工学院是经国家教育部批准设立的全日制普通本科院校&#xff0c;入选全国应用型人才培养工程培养基地、国家级众创空间试点单位、广东省高校电子商务人才孵化基地。开设34个本科专业&#xff0c;涵盖工学、经济学、管理学、文学、艺术学、教育学等6大学科门类&#xff0c…

智慧水务是什么样的?如何打造智慧水务大屏?

在信息化和数字化快速发展的今天&#xff0c;智慧水务作为城市供水管理的重要组成部分&#xff0c;正变得越来越重要。智慧水务大屏作为智慧水务系统的可视化核心&#xff0c;不仅提升了水务管理的效率&#xff0c;而且通过数据的实时监控和分析&#xff0c;为决策者提供了强有…