论文浅尝 | GPT-RE:基于大语言模型针对关系抽取的上下文学习

baae3297d4013bbb01ac4127d258e60b.png

笔记整理:张廉臣,东南大学硕士,研究方向为自然语言处理、信息抽取

链接:https://arxiv.org/pdf/2305.02105.pdf

1、动机

在很多自然语言处理任务中,上下文学习的性能已经媲美甚至超过了全资源微调的方法。但是,其在关系抽取任务上的性能却不尽如人意。以GPT-3为例,一些基于GPT-3的上下文学习抽取方法在关系抽取任务上不理想的效果主要来自于两个方面:① 检索演示示例中实体、关系的相关度较低;② 大语言模型具有将NULL例子错误分类成为预定义关系类型的强烈倾向。造成①的原因主要是以上方法通过随机选择或基于句子表示的K近邻法检索演示示例。这会导致演示示例实体、关系的相关度低;造成②的原因主要是相对于符合预定义类型的示例,NULL示例的复杂度更高,该类型是包含各种未定义的关系的集合。针对以上问题,该论文提出了结合实体感知检索策略和事实标签诱导策略的GPT-RE,以提高基于大语言模型的上下文学习在关系抽取任务上的性能。

2、贡献

该论文的主要贡献包括:

1)提出了实体感知检索策略和事实标签诱导策略,实体感知检索策略能够在演示检索中结合实体信息,获取更适合关系抽取任务的表示;事实标签诱导策略能够引导大语言模型输出更理想的结果;

2)通过实验验证了结合以上两种策略的基于大语言模型的上下文学习框架能够在关系抽取任务中取得很好的效果,在测试数据集上的性能已经赶上甚至超过了现有全监督基线模型;

3、方法

33fa327eb2ff2af4e2b541c28a3852a5.png

图1 GPT-RE框架

GPT-RE是一个使用GPT-3的基于上下文学习的关系抽取框架,其具体方法如下:

3.1 提示构建:

GPT-RE的提示主要包括三部分,分别是:①任务描述和关系预定义类型,②小样本演示示例,③输入样本。提示包含的任务描述和关系预定义类型是对关系抽取的任务描述和其相关的关系预定义类型的一个简洁概括,模型会根据这部分的内容输出预定义的关系类型,若测试样本不属于任何预定义关系类型,模型会输出NULL标签。小样本演示示例是输入模型的演示示例,其中,每条样例包含文本和该文本中所包含的关系,演示示例可以通过后续推理过程进一步的丰富。输入样本为一条文本,GPT-3的任务就是输入文本中实体对所对应的关系。

3.2 实体感知演示检索:

因为演示示例在表示空间中接近测试样本可以使模型表现出更好的性能,最近的一些工作使用K近邻法选出与测试样本句子表示最相近的演示示例。但是,由于句子表示和关系抽取之间的差异,原始上下文的表示在关系抽取任务中不足以完全作为检索演示示例的标准,该论文提出了两种新的获取表示方法提升检索演示示例的质量。

3.2.1 实体提示句子表示:

首先,考虑到实体信息在关系抽取任务中的重要性,作者利用实体对信息重建原始上下文。其具体做法是在原文中加入描述原文中实体对关系类型的内容。在计算句子相似度时,作者使用了最新的健壮模型SimCSE来计算句子之间的相似度。

3.2.2 微调关系表示:

由于关系表示在很多情况下天然地包含了实体表示的信息,与将实体信息加入到上下文中相比,更直接的解决方法是从微调模型中提取关系表示用于检索演示示例。作者认为这种方法可以潜在地弥补GPT-3在关系抽取任务中的局限性。虽然基于GPT-3的上下文学习只使用有限的演示示例,但预训练模型的微调过程可以在整个训练集上进行。这种方法有两个优点:首先,直接使用适应关系抽取任务的关系表示可以显著提高整体检索质量;其次,由于微调后的模型可以准确识别NULL类型,因此过度预测NULL问题将得到缓解。

3.3 事实标签诱导推理:

最近的工作表明,逻辑提示可以引导大语言模型获得理想输出。在该论文中,作者让GPT-3通过相应的事实关系标签来生成每个演示示例的推理逻辑过程。例如,给定一个选定的示例,作者首先基于该示例文本提出一个提示,然后利用GPT-3生成推理上下文中实体对之间关系类型的逻辑线索。最后,作者通过将生成的线索与原始示例结合起来增强演示示例。

4、实验

该论文使用了三个开放领域关系抽取数据集和一个科学领域关系抽取数据集共四个数据集作为实验数据,分别为:Semeval 2010 task 8, TACRED, ACE05和SciERC。基于以上四个数据集的对比方法共分为两大类,第一类为传统的微调基线模型,如PURE;第二类是基于GPT-3的基线模型,如GPT-Random等。该论文对比了以上基线模型和GPT-RE在使用不同表示检索演示示例时的性能,并对比了是否加入实施标签诱导推理提示时GPT-RE的性能差异,其主实验结果如下图所示:

783b0cd2660fcb2b219395fb19a8c14a.png

图2 实验结果

此外,该论文也进行了一系列消融实验和在低资源场景下的实验,具体实验结果请参照原论文。

实验结果表明:① 在检索演示示例时,使用适合特定任务的句子表示是有必要的,无论是使用GPT-RE_SimCSE还是GPT-RE_FT都取得了比GPT-Sent更好的效果;② GPT-RE_FT表现出的性能表明,基于GPT-3的上下文学习有潜力在关系抽取上取得很好的效果,甚至已经在Semeval和SciERC上取得了SOTA效果;③ 相比于GPT-RE_SimCSE,推理模块对GPT-RE_FT的加成更小,这说明GPT-RE_FT获得的演示示例在本实验中质量更高。同时,小样本时推理模块会使模型具有更好的性能。

5、总结

总的来说,该论文探索了GPT-3 上下文学习在关系抽取任务上的潜力。针对GPT-3在此任务上存在的问题,该论文提出了两个策略弥补了基于GPT-3框架和目前SOTA基线模型的差距,实验结果表明,GPT-RE在三个数据集上显著优于微调基线模型,并在Semeval和SciERC上实现了SOTA效果。同时,作者对GPT-3如何克服现有困难,如NULL标签的影响等进行了详细的实例分析,以上工作对后续研究具有比较大的意义。


OpenKG

OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。

45c3024e094943d0d1c14afcab4d9c9b.png

点击阅读原文,进入 OpenKG 网站。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2870129.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

day10-SpringBootWeb案例-1

一、准备工作 1 需求&环境搭建 步骤: 准备数据库表(dept、emp)创建 springboot 工程,引入对应的起步依赖(web、mybatis、mysql 驱动、lombok)配置文件 application.properties 中引入 mybatis 的配置信息,准备对应…

【JAVA】JAVA方法的学习和创造

🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法|MySQL| ​💫个人格言:“没有罗马,那就自己创造罗马~” 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不…

算法导论第十一章思考题参考答案(21)

Ploblem 11-1 a.从所有可能的索引中统一计算每个探针的索引。由于我们有 n≤m/2,我们知道在任何阶段至少有一半的指标是空的。因此,对于需要超过 k 个探针,我 们需要在每 k 个第一个探针中,我们探测到一个已经有一个入口的顶点&a…

柚见十三期(优化)

前端优化 加载匹配功能与加载骨架特效 骨架屏 : vant-skeleton index.vue中 /** * 加载数据 */ const loadData async () > { let userListData; loading.value true; //心动模式 if (isMatchMode.value){ const num 10;//推荐人数 userListData await myA…

软件应用,台球管理系统怎么收费,球房计时计费系统的安装方法,计时灯控器连接

软件应用,台球管理系统怎么收费,球房计时计费系统的安装方法,计时灯控器连接 一、前言 以下软件操作教程以 佳易王桌球计时计费管理系统软件V17.9为例说明 件文件下载可以点击最下方官网卡片——软件下载——试用版软件下载 1、软件的安装…

【Spring Boot】创建你的第一个 Spring Boot 应用

创建你的第一个 Spring Boot 应用 1.环境配置2.步骤详解3.项目结构分析3.1 入口类 DemoApplication3.2 控制器 PathVariableController3.3 控制器 BasicController3.4 模型 User 4.运行 Spring Boot 目前已经成为了 Java 开发领域的框架范式。本篇博客,我将带领大家…

Vision Pro的初体验

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

redis学习-redis介绍以及一些通用命令

目录 1.redis介绍 2.redis常用命令(可以在官网的命令中查看redis的所有命令) 2.1终端命令 2.2 redis通用命令 1.redis介绍 redis即远程字典服务,是当下最热门的NoSQL(非关系型数据库)技术之一,采用…

中文编程入门(Lua5.4.6中文版)第四章 Lua 循环

在游戏开发的奇幻世界中,循环机制就像一位执着的冒险者,在特定规则(条件)的指引下,会不断重复执行一系列精心设计的游戏动作。在 Lua 这款强大而灵活的游戏引擎中,我们有几种独特的“游戏回合”来实现这一规…

C++算法学习心得八.动态规划算法(4)

1.零钱兑换(322题) 题目描述: 给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。 你可以认为每种硬币的数量是无限的。…

ArkTs的资源Resource类型怎么转为string

使用ResourceManager同步转换 请参看:ResourceManager.getStringSync9 例子: try { let testStr: string this.context.resourceManager.getStringSync($r(app.string.test).id); } catch (error) { console.error(getStringSync failed, error code…

@RequestParam、@PathVariable、@RequestBody

1、中文翻译 RequestParam-请求参数、PathVariable-路径变量、RequestBody请求体 2、作用: Controller中获取前端传递的参数 3、从注解本身角度分析 3.1、PathVariable:路径变量 通过 PathVariable 可以将URL中占位符参数{xxx}绑定到处理器类的方法形…

基于单片机的智能小车泊车系统设计

摘 要:随着信息技术的进步,汽车逐渐朝着安全、智能方向发展,智能泊车系统的出现不仅能帮助人们更加快速、安全地完成泊车操作,而且适用于狭小空间的泊车操作,降低驾驶员泊车负担,减轻泊车交通事故发生率。文章基于单片机设计自动泊车系统,以单片机为核心来实现信息收集及…

Java程序OOM自动生成.hprof堆文件并使用jvisualvm分析

Java程序OOM自动生成.hprof堆文件并使用jvisualvm分析 1.示例代码2.编译两份源代码3.带jvm参数启动当内存溢出后,命令会出现4.启动jvisualvm5.导入堆文件 1.示例代码 同目录下准备两个.java源文件 StudentOne.java public class StudentOne {private String id;pri…

【Python】成功解决NameError: name ‘cv2‘ is not defined

【Python】成功解决NameError: name ‘cv2’ is not defined 🌈 个人主页:高斯小哥 🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程👈 希望得到您…

Rabbit MQ详解

写在前面,由于Rabbit MQ涉及的内容较多,赶在春招我个人先按照我认为重要的内容进行一定总结,也算是个学习笔记吧。主要参考官方文档、其他优秀文章、大模型问答。自己边学习边总结。后面有时间我会慢慢把所有内容补全,分享出来也是希望可以给…

ARM和AMD介绍

一、介绍 ARM 和 AMD 都是计算机领域中的知名公司,它们在不同方面具有重要的影响和地位。 ARM(Advanced RISC Machine):ARM 公司是一家总部位于英国的公司,专注于设计低功耗、高性能的处理器架构。ARM 架构以其精简指…

20240313-2-search

search bfs 和 dfs的相关的题目 1. 全排列 题目: 给定一个数字列表&#xff0c;返回其所有可能的排列。 // premute(ans, nums, 0) void permute(vector<vector<int> > &ans, vector<int> &nums, int k){if(knums.size()-1){ans.push_back(nums);…

算法打卡day19|二叉树篇08|Leetcode 235. 二叉搜索树的最近公共祖先、701.二叉搜索树中的插入操作、450.删除二叉搜索树中的节点

算法题 Leetcode 235. 二叉搜索树的最近公共祖先 题目链接:235. 二叉搜索树的最近公共祖先 大佬视频讲解&#xff1a;二叉搜索树的最近公共祖先视频讲解 个人思路 昨天做过一道二叉树的最近公共祖先&#xff0c;而这道是二叉搜索树&#xff0c;那就要好好利用这个有序的特点…

zed2i相机驱动的安装(2)

安装完sdk和wrapper&#xff0c;启动时显示缺少标定文件&#xff0c;第一反应是运行自带的标定程序 但是此时运行ZED tools里的标定程序也会出问题 打开 On Linux : /usr/local/zed/settings/On Windows : C:\ProgramData\Stereolabs\settings 查看里面是否是空的&#xff…