爬取链家二手房房价数据存入mongodb并进行分析

实验目的

1.使用python将爬虫数据存入mongodb;
2.使用python读取mongodb数据并进行可视化分析。

实验原理

MongoDB是文档数据库,采用BSON的结构来存储数据。在文档中可嵌套其他文档类型,使得MongoDB具有很强的数据描述能力。本节案例使用的数据为链家的租房信息,源数据来自于链家网站,所以首先要获取网页数据并解析出本案例所需要的房源信息,然后将解析后的数据存储到MongoDB中,最后基于这些数据进行城市租房信息的查询和聚合分析等。

实验环境

OS:Windows 10
Python3
MongoDB:v4.4

实验步骤

一、使用python将爬虫数据存入mongodb

1.爬取数据

分析租房信息首先要获取原始的二手房房源数据,本例使用python爬虫技术获取链家网页的二手房楼盘信息。如图所示,对房源信息进行分析需要获取房源所在区域、小区名、房型、面积、具体位置、价格等信息。
在这里插入图片描述

定义了三个函数依次实现此过程:

import requests
import re
import threading
import pandas as pd
from lxml import etree
# 全部信息列表
count=list()#生成1-10页url
def url_creat():#基础urlurl = 'https://gl.lianjia.com/ershoufang/pg{}/'#生成前10页url列表links=[url.format(i) for i in range(1,11)]return links#对url进行解析
def url_parse(url):headers = {'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9','Accept-Encoding': 'gzip, deflate, br','Accept-Language': 'zh-CN,zh;q=0.9','Cache-Control': 'no-cache','Connection': 'keep-alive','Cookie': 'lianjia_uuid=7e346c7c-5eb3-45d9-8b4f-e7cf10e807ba; UM_distinctid=17a3c5c21243a-0c5b8471aaebf5-6373267-144000-17a3c5c21252dc; _smt_uid=60d40f65.47c601a8; _ga=GA1.2.992911268.1624510312; select_city=370200; lianjia_ssid=f47906f0-df1a-49e2-ad9b-648711b11434; CNZZDATA1253492431=1056289575-1626962724-https%253A%252F%252Fwww.baidu.com%252F%7C1626962724; CNZZDATA1254525948=1591837398-1626960171-https%253A%252F%252Fwww.baidu.com%252F%7C1626960171; CNZZDATA1255633284=1473915272-1626960625-https%253A%252F%252Fwww.baidu.com%252F%7C1626960625; CNZZDATA1255604082=1617573044-1626960658-https%253A%252F%252Fwww.baidu.com%252F%7C1626960658; _jzqa=1.4194666890570963500.1624510309.1624510309.1626962867.2; _jzqc=1; _jzqy=1.1624510309.1626962867.2.jzqsr=baidu|jzqct=%E9%93%BE%E5%AE%B6.jzqsr=baidu; _jzqckmp=1; _qzjc=1; sensorsdata2015jssdkcross=%7B%22distinct_id%22%3A%2217a3c5c23964c1-05089a8de73cbf-6373267-1327104-17a3c5c23978b3%22%2C%22%24device_id%22%3A%2217a3c5c23964c1-05089a8de73cbf-6373267-1327104-17a3c5c23978b3%22%2C%22props%22%3A%7B%22%24latest_traffic_source_type%22%3A%22%E8%87%AA%E7%84%B6%E6%90%9C%E7%B4%A2%E6%B5%81%E9%87%8F%22%2C%22%24latest_referrer%22%3A%22https%3A%2F%2Fwww.baidu.com%2Flink%22%2C%22%24latest_referrer_host%22%3A%22www.baidu.com%22%2C%22%24latest_search_keyword%22%3A%22%E6%9C%AA%E5%8F%96%E5%88%B0%E5%80%BC%22%2C%22%24latest_utm_source%22%3A%22baidu%22%2C%22%24latest_utm_medium%22%3A%22pinzhuan%22%2C%22%24latest_utm_campaign%22%3A%22wyyantai%22%2C%22%24latest_utm_content%22%3A%22biaotimiaoshu%22%2C%22%24latest_utm_term%22%3A%22biaoti%22%7D%7D; Hm_lvt_9152f8221cb6243a53c83b956842be8a=1624510327,1626962872; _gid=GA1.2.134344742.1626962875; Hm_lpvt_9152f8221cb6243a53c83b956842be8a=1626962889; _qzja=1.1642609541.1626962866646.1626962866646.1626962866647.1626962872770.1626962889355.0.0.0.3.1; _qzjb=1.1626962866646.3.0.0.0; _qzjto=3.1.0; _jzqb=1.3.10.1626962867.1; srcid=eyJ0Ijoie1wiZGF0YVwiOlwiNzQ3M2M3OWQyZTQwNGM5OGM1MDBjMmMxODk5NTBhOWRhNmEyNjhkM2I5ZjNlOTkxZTdiMDJjMTg0ZGUxNzI0NDQ5YmZmZGI1ZjZmMDRkYmE0MzVmNmNlNDIwY2RiM2YxZTUzZWViYmQwYmYzMDQ1NDcyMzYwZTQzOTg3MzJhYTRjMTg0YjNhYjBkMGMyZGVmOWZiYjdlZWQwMDcwNWFkZmI5NzA5MjM1NmQ1NDg0MzQ3NGIzYjkwY2IyYmEwMjA2NjBjMjI2OWRjNjFiNDE3ZDc1NGViNjhlMzIzZmI0MjFkNzU5ZGNlMzAzMDhlNDAzYzIzNjllYWFlMzYxZGYxYjNmZmVkNGMxYTk1MmQ3MGY2MmJhMTQ1NWI4ODIwNTE5ODI2Njg2MmVkZTk4OWZiMDhjNTJhNzE3OTBlNDFiZDQzZTlmNDNmOGRlMTFjYTAwYTRlZTZiZWY5MTZkMTcwN1wiLFwia2V5X2lkXCI6XCIxXCIsXCJzaWduXCI6XCI3ZjI1NWI1ZlwifSIsInIiOiJodHRwczovL3FkLmxpYW5qaWEuY29tL2Vyc2hvdWZhbmcvMTAzMTE2MDkzOTU5Lmh0bWwiLCJvcyI6IndlYiIsInYiOiIwLjEifQ==','Host': 'qd.lianjia.com','Pragma': 'no-cache','Referer': 'https://qd.lianjia.com/','sec-ch-ua': '" Not;A Brand";v="99", "Google Chrome";v="91", "Chromium";v="91"','sec-ch-ua-mobile': '?0','Sec-Fetch-Dest': 'document','Sec-Fetch-Mode': 'navigate','Sec-Fetch-Site': 'same-origin','Sec-Fetch-User': '?1','Upgrade-Insecure-Requests': '1','User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.164 Safari/537.36'}response=requests.get(url=url,headers=headers).texttree=etree.HTML(response)#ul列表下的全部li标签li_List=tree.xpath("//*[@class='sellListContent']/li")#创建线程锁对象lock = threading.RLock()#上锁lock.acquire()for li in li_List:#标题title=li.xpath('./div/div/a/text()')[0]#网址link=li.xpath('./div/div/a/@href')[0]#位置postion=li.xpath('./div/div[2]/div/a/text()')[0]+li.xpath('./div/div[2]/div/a[2]/text()')[0]#类型types=li.xpath('./div/div[3]/div/text()')[0].split(' | ')[0]#面积area=li.xpath('./div/div[3]/div/text()')[0].split(' | ')[1]area=area[:-2]#房屋信息info=li.xpath('./div/div[3]/div/text()')[0].split(' | ')[2:-1]info=''.join(info)#房屋年份year=li.xpath('./div/div[3]/div/text()')[0].split(' | ')[5]numbers = re.sub("\D", "",year) # 匹配连续的数字year=''.join(numbers)#房屋装修情况renovation=li.xpath('./div/div[3]/div/text()')[0].split(' | ')[3]#总价count_price=li.xpath('.//div/div[6]/div/span/text()')[0]#单价angle_price=li.xpath('.//div/div[6]/div[2]/span/text()')[0]angle_price=re.sub("\D", "",angle_price)#只保留数字dic={'标题':title,"位置":postion,'房屋类型':types,'面积(平米)':area,"单价(元/平)":angle_price,'总价(万)':count_price,'年份':year,'精/简装':renovation,'介绍':info,"网址":link}print(dic)#将房屋信息加入总列表中count.append(dic)#解锁lock.release()
def run():links = url_creat()#多线程爬取for i in links:x=threading.Thread(target=url_parse,args=(i,))x.start()x.join()#将全部房屋信息转化为exceldata=pd.DataFrame(count)data.to_excel('桂林房屋信息.xlsx',index=False)
if __name__ == '__main__':run()

爬虫细节参考:【Python爬虫项目】链家房屋信息抓取(超详细适合新手练习附源码)

2.数据清洗

爬出下来的数据存在空缺的情况,并需要去除部分信息【不清洗也可以】
使用python进行数据清洗。首先读取数据

import pandas as pd
data = pd.read_excel("桂林房屋信息.xlsx")
data.head(5)
#data.info()

在这里插入图片描述

去掉标题、介绍和网址列,去掉年份为空的行

data_db=data[["位置","房屋类型","面积(平米)","单价(元/平)","总价(万)","年份","精/简装"]].dropna()
data_db["年份"]=data_db["年份"].astype('int')#年份变成整型
data_db = data_db.sort_values(by="年份", ascending=False)#按年份进行排序
data_db

在这里插入图片描述

3.数据存储

将清洗好的数据存储到mongodb中:将数据转换成字典列表形式,通过insert_many方法写入

import pandas as pd
from pymongo import MongoClient# 创建MongoDB客户端
client = MongoClient('localhost', 27017) # 根据自己的配置修改主机名和端口号
db = client['lianjia'] # 选择或创建数据库
collection = db['ershoufang'] # 选择或创建集合# 读取DataFrame数据
# 转换DataFrame为字典列表形式
documents = data_db.to_dict(orient='records')# 向集合中插入文档
collection.insert_many(documents)print("Data stored in MongoDB successfully!")

成功写入
在这里插入图片描述

二、使用 python 读取 mongodb 数据并进行可视化分析

房源数据进行存储后,需要进行数据分析,比如获取不同年份房价(单价)的最小值和最大值,并以条形图的形式展示出来。
1.以统计不同年份的房价为例,使用 MongoDB 聚合管道技术对数据进行分组计算,如下代码片段对房源的不同年份进行分组聚合:

db = client['lianjia'] # 选择数据库
col= db['ershoufang'] # 选择集合
# 使用 $group 操作对文档分组和聚合
pipeline = [{"$group": {"_id": "$年份","MinPrice": {"$min": "$单价(元/平)"} ,"MaxPrice": {"$max" : "$单价(元/平)"}}}
] 
# 执行聚合操作
price = list(col.aggregate(pipeline))
# 打印分组和聚合结果
for doc in price:print(doc)

在这里插入图片描述

出现了问题:

#这样提取的不了“_id”字段到列表year中
year =[]
for doc in price:year.append(doc["_id"])

也就是nongodb聚合出来的结果python不能直接提取到列表,这个问题我也不知道如何解决。。。
大佬们若知道还请评论区告知一声。

所以,比较笨拙的办法为,把聚合的结果先存储到新的集合中:

 db.ershoufang.aggregate( [ {$group:{"_id":"$年份","MinPrice":{"$min":"$单价(元/平)"},"MaxPrice":{"$max":"$单价(元/平)"}}},{ $sort : { "_id" : 1 } },{"$out":{"db":"lianjia","coll":"tongji"}}])

其中,{ $sort : { “_id” : 1 } }为按照_id字段排序,即为按照年份排序, {“$out”:{“db”:“lianjia”,“coll”:“tongji”}} 为把聚合结果作文新文档存放在数据库lianjia的集合tongji中。

在这里插入图片描述

这样就可以提取文档的字段到列表中了,进行下一步:绘图。

2.基于聚合统计出的数据使用 python 绘制条形图,使用到 matplotlib 库,具体代
码如下:

import matplotlib.pyplot as plt
import matplotlib
import numpy as np
import jsoncol2= db['tongji'] # 选择集合
year =[]
Min_Price =[]
Max_Price =[]
#获取聚合后的数据并插入 year ,Min_Price,Max_Price,用于纵横坐标显示。
for doc in col2.find():year.append(doc["_id"])Min_Price.append(doc["MinPrice"])Max_Price.append(doc["MaxPrice"])
# 设置中文字体和负号正常显示
matplotlib.rcParams['font.sans-serif'] = ['SimHei']
# 创建一个新的画布并指定大小为10x6英寸
plt.figure(figsize=(16, 8))
x=year
#绘制条形图 :条形中点横坐标;height:长条形高度;width:长条形宽度,默认值0.8;label:为后面设置 legend 准备
rects1=plt.bar(x,height=Min_Price,width=0.4,alpha=0.8,color='red', label="最低房价")
rects2=plt.bar([i + 0.4 for i in x],height=Max_Price, width=0.4, color='green', label="最高房价")
plt.ylim(0,max(Max_Price)+1000) # y 轴取值范围
plt.legend(loc="upper left", prop={"size": 12, })  # 显示图例  设置图例的大小和方向
#设置两个柱状图数据显示
for rect in rects1:height = rect.get_height()plt.text(rect.get_x() + rect.get_width() / 2, height+1, str(height), ha="center", va="bottom")
for rect in rects2:height = rect.get_height()plt.text(rect.get_x() + rect.get_width() / 2, height+1, str(height), ha="center", va="bottom")
plt.ylabel("单价")
#设置 x 轴刻度显示值;参数一:中点坐标;参数二:显示值
plt.xticks([index + 0.2 for index in x],year)
plt.xlabel("年份")
plt.title("桂林二手房房价")#显示条形图
plt.show()

结果如图所示
在这里插入图片描述
一些容易出现的问题:
1.数据类型问题:爬虫阶段下载的数据可能是文本类型的或者带单位,数据分析需要改为浮点型或者整型,当然也可以在下载的时候处理好
2.下载的数据若要以年份进行排序,需要提前处理,否则画图会出现问题。

参考资料:《NoSQL数据库原理与应用》,主编:王爱国、许桂秋。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2807862.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

第6.4章:StarRocks查询加速——Colocation Join

目录 一、StarRocks数据划分 1.1 分区 1.2 分桶 二、Colocation Join实现原理 2.1 Colocate Join概述 2.2 Colocate Join实现原理 三、应用案例 注:本篇文章阐述的是StarRocks-3.2版本的Colocation Join 官网文章地址: Colocate Join | StarRoc…

【科技素养题】少儿编程 蓝桥杯青少组科技素养题真题及解析第24套

少儿编程 蓝桥杯青少组科技素养题真题及解析第24套 1、A市和B市决定联合建造一个邮件集散中心用于将来自其他地区的邮件运送至两个城市。A 市每周会收到 4000 份邮件,B 市每周会收到 6000 份邮件。假设运送邮件的时间与集散中心距离城市的距离成正比,A市与8市之间的连线长50…

相机选型介绍

摄影测量中,相机是非常重要的角色,合适的相机产出合适的图像,得到合适的重建精度,这是相机的重要性。 您也许第一反应是,摄影测量所需的理想相机,是有着超高分辨率的相机,但事实可能并非如此&a…

中兴通讯携吉林移动迈向5G-A新阶段,完成3CC技术应用

日前,中兴通讯携手中国移动吉林移动分公司,在5G-A领域取得新突破。具体来说,双方基于MTK芯片M80终端,完成了5G-A三载波聚合试点,实测下行速率达到理论峰值4.25Gbps,相比2.6G单载波速率提升2.5倍。如此成绩&…

11-pytorch-使用自己的数据集测试

b站小土堆pytorch教程学习笔记 import torch import torchvision from PIL import Image from torch import nnimg_path ../imgs/dog.png imageImage.open(img_path) print(image) # imageimage.convert(RGB)transformtorchvision.transforms.Compose([torchvision.transforms.…

typecho 给文章创建目录树

受益于 shortcode 短代码插件和泽泽短代码中目录树的显示样式&#xff0c;形成了自己实现添加文章目录的思路&#xff1a; 一、文章目录树的结构 <div id"toc"><div class"toc-left"><div class"toc-btn" type"button&quo…

【机器学习基础】一元线性回归(适合初学者的保姆级文章)

&#x1f680;个人主页&#xff1a;为梦而生~ 关注我一起学习吧&#xff01; &#x1f4a1;专栏&#xff1a;机器学习 欢迎订阅&#xff01;后面的内容会越来越有意思~ &#x1f4a1;往期推荐&#xff1a; 【机器学习基础】机器学习入门&#xff08;1&#xff09; 【机器学习基…

Linux进程【补充】

文章目录 进程概念task_struct 进程创建forkvfork写时拷贝 进程状态僵尸进程孤儿进程守护进程 进程地址空间是什么为什么怎么做 进程概念 进程是一个程序的执行实例或者是担当系统资源分配的实体。当一个程序运行时&#xff0c;被从硬盘加载到内存中&#xff0c;操作系统为每个…

Canvas学习笔记02:canvas的路径扫盲,附代码案例

hello&#xff0c;我是贝格前端工场&#xff0c;最近在学习canvas&#xff0c;分享一些canvas的一些知识点笔记&#xff0c;本期分享canvas的路径知识&#xff0c;欢迎老铁们一同学习&#xff0c;欢迎关注&#xff0c;如有前端项目可以私信贝格。 一、什么是canvas路径 Canvas…

大模型 Advanced-RAG(高级检索增强生成):从理论到 LlamaIndex 实战!

最近关于检索增强生成进行了调查&#xff0c;总结了三种最近发展的范式&#xff1a; Naive RAG&#xff08;简单RAG&#xff09;Advanced RAG&#xff08;高级RAG&#xff09;Modular RAG&#xff08;模块化RAG&#xff09; 本文首先讨论这些技术&#xff0c;接着分享如何使…

数字电路 第二章—第二节(半导体二极管、三极管和MOS管的开关特性)

一、理想开关的开关特性 1、静态特性 &#xff08;1&#xff09;断开时&#xff0c;无论在多大范围内变化&#xff0c;其等效电阻&#xff0c;通过其中的电流。 &#xff08;2&#xff09;闭合时&#xff0c;无论流过其中的电流在多大范围内变化&#xff0c;其等效电阻&…

Spark大数据分析与实战笔记(第三章 Spark RDD 弹性分布式数据集-05)

文章目录 每日一句正能量第3章 Spark RDD弹性分布式数据集章节概要3.7 Spark的任务调度3.7.1 DAG的概念3.7.2 RDD在Spark中的运行流程 总结 每日一句正能量 成功的速度一定要超过父母老去的速度&#xff0c;努力吧。做事不必与俗同&#xff0c;亦不与俗异&#xff1b;做事不必令…

Mysql运维篇(六) 部署MHA--一主二从部署

MAH架构图 一、上传MySQL软件 1、同步MySQL软件 [rootmysql01 ~]# ls -lrt total 626112 -rw-r--r--. 1 root root 641127384 Jan 30 15:13 mysql-5.7.20-linux-glibc2.12-x86_64.tar.gz -rw-------. 1 root root 1697 Feb 3 12:09 anaconda-ks.cfg -rw-r--r--. 1 root…

[SpringDataMongodb开发游戏服务器实战]

背景&#xff1a; xdb其实足够完美了&#xff0c;现在回想一下&#xff0c;觉得有点复杂&#xff0c;我们不应该绑定语言&#xff0c;最好有自己的架构思路。 七号堡垒作为成功的商业项目&#xff0c;告诉我&#xff1a;其实数据是多读少写的&#xff0c;有修改的时候直接改库也…

推荐一个 Obsidian 的 ChatGPT 插件

源码地址&#xff1a;https://github.com/nhaouari/obsidian-textgenerator-plugin Text Generator 是目前我使用过的最好的 Obsidian 中的 ChatGPT 功能插件。它旨在智能生成内容&#xff0c;以便轻松记笔记。它不仅可以在 Obsidian 中直接使用 ChatGPT&#xff0c;还提供了优…

Python staticmethod函数

Python是一种功能强大且灵活的编程语言&#xff0c;具有许多特性和功能&#xff0c;其中之一就是staticmethod函数。staticmethod函数是Python中用于定义静态方法的一种特殊装饰器。在本文中&#xff0c;将深入探讨staticmethod函数的用法、优势以及与其他方法类型的比较。 什…

【力扣 - 将有序数组转化为二叉搜索树】

题目描述 给你一个整数数组 nums &#xff0c;其中元素已经按 升序 排列&#xff0c;请你将其转换为一棵 高度平衡 二叉搜索树。 高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。 题解 前言 二叉搜索树的中序遍历是升序序列&a…

黑马JavaWeb开发跟学(一)Web前端开发HTML、CSS基础

黑马JavaWeb开发一.Web前端开发HTML、CSS基础 引子、Web开发介绍传统路线本课程全新路线本课程适用人群课程收获一、什么是web开发二、网站的工作流程三、网站的开发模式四、网站的开发技术 前端开发基础一、前端开发二、HTML & CSS2.1 HTML快速入门2.1.1 操作第一步第二步…

Arduino中安装ESP32网络抽风无法下载 暴力解决办法 python

不知道什么仙人设计的arduino连接网络部分&#xff0c;死活下不下来。&#xff08;真的沙口&#xff0c;第一次看到这么抽风的下载口&#xff09; 操作 给爷惹火了我踏马解析json选zip直接全部下下来 把这个大家的开发板管理地址下下来跟后面python放在同一目录下&#xff0c…

FDTD算法总结

计算电磁学(Computational Electromagnetics, CEM)是通过数值计算来研究电磁场的交叉学科。 数值求解电磁学问题的方法可以分成频域(Frequency Doamin, FD)、时域(Time Domain, TD)等两类。 频域法基于时谐微分&#xff0c;通过对多个采样值的傅里叶逆变换得到所需的脉冲响应…