C++力扣题目 392--判断子序列 115--不同的子序列 583--两个字符串的删除操作 72--编辑操作

392.判断子序列

力扣题目链接(opens new window)

给定字符串 s 和 t ,判断 s 是否为 t 的子序列。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。

示例 1:

  • 输入:s = "abc", t = "ahbgdc"
  • 输出:true

示例 2:

  • 输入:s = "axc", t = "ahbgdc"
  • 输出:false

提示:

  • 0 <= s.length <= 100
  • 0 <= t.length <= 10^4

两个字符串都只由小写字符组成。

#思路

(这道题也可以用双指针的思路来实现,时间复杂度也是O(n))

这道题应该算是编辑距离的入门题目,因为从题意中我们也可以发现,只需要计算删除的情况,不用考虑增加和替换的情况。

所以掌握本题的动态规划解法是对后面要讲解的编辑距离的题目打下基础

动态规划五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]

注意这里是判断s是否为t的子序列。即t的长度是大于等于s的。

有同学问了,为啥要表示下标i-1为结尾的字符串呢,为啥不表示下标i为结尾的字符串呢?

为什么这么定义我在 718. 最长重复子数组 (opens new window)中做了详细的讲解。

其实用i来表示也可以!

但我统一以下标i-1为结尾的字符串来计算,这样在下面的递归公式中会容易理解一些,如果还有疑惑,可以继续往下看。

  1. 确定递推公式

在确定递推公式的时候,首先要考虑如下两种操作,整理如下:

  • if (s[i - 1] == t[j - 1])
    • t中找到了一个字符在s中也出现了
  • if (s[i - 1] != t[j - 1])
    • 相当于t要删除元素,继续匹配

if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1;,因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]的基础上加1(如果不理解,在回看一下dp[i][j]的定义

if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];

其实这里 大家可以发现和 1143.最长公共子序列 (opens new window)的递推公式基本那就是一样的,区别就是 本题 如果删元素一定是字符串t,而 1143.最长公共子序列 是两个字符串都可以删元素。

  1. dp数组如何初始化

从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以dp[0][0]和dp[i][0]是一定要初始化的。

这里大家已经可以发现,在定义dp[i][j]含义的时候为什么要表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]

因为这样的定义在dp二维矩阵中可以留出初始化的区间,如图:

392.判断子序列

如果要是定义的dp[i][j]是以下标i为结尾的字符串s和以下标j为结尾的字符串t,初始化就比较麻烦了。

dp[i][0] 表示以下标i-1为结尾的字符串,与空字符串的相同子序列长度,所以为0. dp[0][j]同理。

vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));

  1. 确定遍历顺序

同理从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],那么遍历顺序也应该是从上到下,从左到右

如图所示:

392.判断子序列1

  1. 举例推导dp数组

以示例一为例,输入:s = "abc", t = "ahbgdc",dp状态转移图如下:

392.判断子序列2

dp[i][j]表示以下标i-1为结尾的字符串s和以下标j-1为结尾的字符串t 相同子序列的长度,所以如果dp[s.size()][t.size()] 与 字符串s的长度相同说明:s与t的最长相同子序列就是s,那么s 就是 t 的子序列。

图中dp[s.size()][t.size()] = 3, 而s.size() 也为3。所以s是t 的子序列,返回true。

动规五部曲分析完毕,C++代码如下:

class Solution {
public:bool isSubsequence(string s, string t) {vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));for (int i = 1; i <= s.size(); i++) {for (int j = 1; j <= t.size(); j++) {if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;else dp[i][j] = dp[i][j - 1];}}if (dp[s.size()][t.size()] == s.size()) return true;return false;}
};

  • 时间复杂度:O(n × m)
  • 空间复杂度:O(n × m)

#总结

这道题目算是编辑距离的入门题目(毕竟这里只是涉及到减法),也是动态规划解决的经典题型。

这一类题都是题目读上去感觉很复杂,模拟一下也发现很复杂,用动规分析完了也感觉很复杂,但是最终代码却很简短。

在之前的题目讲解中,我们讲了 1143.最长公共子序列 (opens new window),大家会发现 本题和 1143.最长公共子序列 的相似之处。

编辑距离的题目最能体现出动规精髓和巧妙之处,大家可以好好体会一下。

 

115.不同的子序列

力扣题目链接(opens new window)

给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。

字符串的一个 子序列 是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如,"ACE" 是 "ABCDE" 的一个子序列,而 "AEC" 不是)

题目数据保证答案符合 32 位带符号整数范围。

115.不同的子序列示例

提示:

  • 0 <= s.length, t.length <= 1000
  • s 和 t 由英文字母组成

#思路

这道题目如果不是子序列,而是要求连续序列的,那就可以考虑用KMP。

这道题目相对于72. 编辑距离,简单了不少,因为本题相当于只有删除操作,不用考虑替换增加之类的。

但相对于刚讲过的动态规划:392.判断子序列 (opens new window)就有难度了,这道题目双指针法可就做不了了,来看看动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。

为什么i-1,j-1 这么定义我在 718. 最长重复子数组 (opens new window)中做了详细的讲解。

  1. 确定递推公式

这一类问题,基本是要分析两种情况

  • s[i - 1] 与 t[j - 1]相等
  • s[i - 1] 与 t[j - 1] 不相等

当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。

一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。

一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。

这里可能有录友不明白了,为什么还要考虑 不用s[i - 1]来匹配,都相同了指定要匹配啊

例如: s:bagg 和 t:bag ,s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。

当然也可以用s[3]来匹配,即:s[0]s[1]s[3]组成的bag。

所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];

当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]

所以递推公式为:dp[i][j] = dp[i - 1][j];

这里可能有录友还疑惑,为什么只考虑 “不用s[i - 1]来匹配” 这种情况, 不考虑 “不用t[j - 1]来匹配” 的情况呢。

这里大家要明确,我们求的是 s 中有多少个 t,而不是 求t中有多少个s,所以只考虑 s中删除元素的情况,即 不用s[i - 1]来匹配 的情况。

  1. dp数组如何初始化

从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j] 是从上方和左上方推导而来,如图:,那么 dp[i][0] 和dp[0][j]是一定要初始化的。

每次当初始化的时候,都要回顾一下dp[i][j]的定义,不要凭感觉初始化。

dp[i][0]表示什么呢?

dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。

那么dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。

再来看dp[0][j],dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。

那么dp[0][j]一定都是0,s如论如何也变成不了t。

最后就要看一个特殊位置了,即:dp[0][0] 应该是多少。

dp[0][0]应该是1,空字符串s,可以删除0个元素,变成空字符串t。

初始化分析完毕,代码如下:

vector<vector<long long>> dp(s.size() + 1, vector<long long>(t.size() + 1));
for (int i = 0; i <= s.size(); i++) dp[i][0] = 1;
for (int j = 1; j <= t.size(); j++) dp[0][j] = 0; // 其实这行代码可以和dp数组初始化的时候放在一起,但我为了凸显初始化的逻辑,所以还是加上了。

  1. 确定遍历顺序

从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j]都是根据左上方和正上方推出来的。

所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

代码如下:

for (int i = 1; i <= s.size(); i++) {for (int j = 1; j <= t.size(); j++) {if (s[i - 1] == t[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];} else {dp[i][j] = dp[i - 1][j];}}
}

  1. 举例推导dp数组

以s:"baegg",t:"bag"为例,推导dp数组状态如下:

115.不同的子序列

如果写出来的代码怎么改都通过不了,不妨把dp数组打印出来,看一看,是不是这样的。

动规五部曲分析完毕,代码如下:

class Solution {
public:int numDistinct(string s, string t) {vector<vector<uint64_t>> dp(s.size() + 1, vector<uint64_t>(t.size() + 1));for (int i = 0; i < s.size(); i++) dp[i][0] = 1;for (int j = 1; j < t.size(); j++) dp[0][j] = 0;for (int i = 1; i <= s.size(); i++) {for (int j = 1; j <= t.size(); j++) {if (s[i - 1] == t[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];} else {dp[i][j] = dp[i - 1][j];}}}return dp[s.size()][t.size()];}
};
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

 

583. 两个字符串的删除操作

力扣题目链接(opens new window)

给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符。

示例:

  • 输入: "sea", "eat"
  • 输出: 2
  • 解释: 第一步将"sea"变为"ea",第二步将"eat"变为"ea"

#思路

#动态规划一

本题和动态规划:115.不同的子序列 (opens new window)相比,其实就是两个字符串都可以删除了,情况虽说复杂一些,但整体思路是不变的。

这次是两个字符串可以相互删了,这种题目也知道用动态规划的思路来解,动规五部曲,分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。

这里dp数组的定义有点点绕,大家要撸清思路。

  1. 确定递推公式
  • 当word1[i - 1] 与 word2[j - 1]相同的时候
  • 当word1[i - 1] 与 word2[j - 1]不相同的时候

当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];

当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1

情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2

那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);

这里可能不少录友有点迷糊,从字面上理解 就是 当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1]了,那么我在删 word1[i - 1],是不是就达到两个元素都删除的效果,即 dp[i][j-1] + 1。

  1. dp数组如何初始化

从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。

dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。

dp[0][j]的话同理,所以代码如下:

vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));
for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;

  1. 确定遍历顺序

从递推公式 dp[i][j] = min(dp[i - 1][j - 1] + 2, min(dp[i - 1][j], dp[i][j - 1]) + 1); 和dp[i][j] = dp[i - 1][j - 1]可以看出dp[i][j]都是根据左上方、正上方、正左方推出来的。

所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

  1. 举例推导dp数组

以word1:"sea",word2:"eat"为例,推导dp数组状态图如下:

583.两个字符串的删除操作1

以上分析完毕,代码如下:

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;for (int i = 1; i <= word1.size(); i++) {for (int j = 1; j <= word2.size(); j++) {if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];} else {dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);}}}return dp[word1.size()][word2.size()];}
};

  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

#动态规划二

本题和动态规划:1143.最长公共子序列 (opens new window)基本相同,只要求出两个字符串的最长公共子序列长度即可,那么除了最长公共子序列之外的字符都是必须删除的,最后用两个字符串的总长度减去两个最长公共子序列的长度就是删除的最少步数。

代码如下:

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size()+1, vector<int>(word2.size()+1, 0));for (int i=1; i<=word1.size(); i++){for (int j=1; j<=word2.size(); j++){if (word1[i-1] == word2[j-1]) dp[i][j] = dp[i-1][j-1] + 1;else dp[i][j] = max(dp[i-1][j], dp[i][j-1]);}}return word1.size()+word2.size()-dp[word1.size()][word2.size()]*2;}
};
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

 

72. 编辑距离

力扣题目链接(opens new window)

给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

  • 插入一个字符

  • 删除一个字符

  • 替换一个字符

  • 示例 1:

  • 输入:word1 = "horse", word2 = "ros"

  • 输出:3

  • 解释: horse -> rorse (将 'h' 替换为 'r') rorse -> rose (删除 'r') rose -> ros (删除 'e')

  • 示例 2:

  • 输入:word1 = "intention", word2 = "execution"

  • 输出:5

  • 解释: intention -> inention (删除 't') inention -> enention (将 'i' 替换为 'e') enention -> exention (将 'n' 替换为 'x') exention -> exection (将 'n' 替换为 'c') exection -> execution (插入 'u')

提示:

  • 0 <= word1.length, word2.length <= 500
  • word1 和 word2 由小写英文字母组成

#思路

编辑距离终于来了,这道题目如果大家没有了解动态规划的话,会感觉超级复杂。

编辑距离是用动规来解决的经典题目,这道题目看上去好像很复杂,但用动规可以很巧妙的算出最少编辑距离。

接下来我依然使用动规五部曲,对本题做一个详细的分析:

#1. 确定dp数组(dp table)以及下标的含义

dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]

有同学问了,为啥要表示下标i-1为结尾的字符串呢,为啥不表示下标i为结尾的字符串呢?

为什么这么定义我在 718. 最长重复子数组 (opens new window)中做了详细的讲解。

其实用i来表示也可以! 用i-1就是为了方便后面dp数组初始化的。

#2. 确定递推公式

在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:

if (word1[i - 1] == word2[j - 1])不操作
if (word1[i - 1] != word2[j - 1])增删换

也就是如上4种情况。

if (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,dp[i][j] 就应该是 dp[i - 1][j - 1],即dp[i][j] = dp[i - 1][j - 1];

此时可能有同学有点不明白,为啥要即dp[i][j] = dp[i - 1][j - 1]呢?

那么就在回顾上面讲过的dp[i][j]的定义,word1[i - 1] 与 word2[j - 1]相等了,那么就不用编辑了,以下标i-2为结尾的字符串word1和以下标j-2为结尾的字符串word2的最近编辑距离dp[i - 1][j - 1]就是 dp[i][j]了。

在下面的讲解中,如果哪里看不懂,就回想一下dp[i][j]的定义,就明白了。

在整个动规的过程中,最为关键就是正确理解dp[i][j]的定义!

if (word1[i - 1] != word2[j - 1]),此时就需要编辑了,如何编辑呢?

  • 操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。

即 dp[i][j] = dp[i - 1][j] + 1;

  • 操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。

即 dp[i][j] = dp[i][j - 1] + 1;

这里有同学发现了,怎么都是删除元素,添加元素去哪了。

word2添加一个元素,相当于word1删除一个元素,例如 word1 = "ad" ,word2 = "a"word1删除元素'd' 和 word2添加一个元素'd',变成word1="a", word2="ad", 最终的操作数是一样! dp数组如下图所示意的:

            a                         a     d+-----+-----+             +-----+-----+-----+|  0  |  1  |             |  0  |  1  |  2  |+-----+-----+   ===>      +-----+-----+-----+a |  1  |  0  |           a |  1  |  0  |  1  |+-----+-----+             +-----+-----+-----+d |  2  |  1  |+-----+-----+

操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增删加元素。

可以回顾一下,if (word1[i - 1] == word2[j - 1])的时候我们的操作 是 dp[i][j] = dp[i - 1][j - 1] 对吧。

那么只需要一次替换的操作,就可以让 word1[i - 1] 和 word2[j - 1] 相同。

所以 dp[i][j] = dp[i - 1][j - 1] + 1;

综上,当 if (word1[i - 1] != word2[j - 1]) 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;

递归公式代码如下:

if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];
}
else {dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}

#3. dp数组如何初始化

再回顾一下dp[i][j]的定义:

dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]

那么dp[i][0] 和 dp[0][j] 表示什么呢?

dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。

那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;

同理dp[0][j] = j;

所以C++代码如下:

for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;

#4. 确定遍历顺序

从如下四个递推公式:

  • dp[i][j] = dp[i - 1][j - 1]
  • dp[i][j] = dp[i - 1][j - 1] + 1
  • dp[i][j] = dp[i][j - 1] + 1
  • dp[i][j] = dp[i - 1][j] + 1

可以看出dp[i][j]是依赖左方,上方和左上方元素的,如图:

72.编辑距离

所以在dp矩阵中一定是从左到右从上到下去遍历。

代码如下:

for (int i = 1; i <= word1.size(); i++) {for (int j = 1; j <= word2.size(); j++) {if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];}else {dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;}}
}

#5. 举例推导dp数组

以示例1为例,输入:word1 = "horse", word2 = "ros"为例,dp矩阵状态图如下:

72.编辑距离1

以上动规五部分析完毕,C++代码如下:

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;for (int i = 1; i <= word1.size(); i++) {for (int j = 1; j <= word2.size(); j++) {if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];}else {dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;}}}return dp[word1.size()][word2.size()];}
};
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2803578.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

小说阅读软件书架界面和历史记录界面

1、引言 终于修改到书架界面和历史阅读记录界面了&#xff0c;修改完这两个界面就算完成一大半了&#xff0c;这两个界面其实都差不多&#xff0c;代码逻辑都一样&#xff0c;因此后面也会只展示书架界面的代码&#xff0c;历史阅读记录界面就展示效果图就行了。 2、实现代码 …

无线听觉新体验:南卡、韶音、墨觉骨传导耳机综合评测

作为一个资深的跑步爱好者&#xff0c;我几乎离不开音乐的陪伴。不知道大家有没有同感&#xff0c;有时候一首歌曲就是我坚持下去的动力&#xff0c;尤其是在那段艰难的跑步时刻。但是找到一款既能让我在运动中自由呼吸、又能提供优质音乐体验的耳机&#xff0c;并不是一件容易…

Redis(十五)Bitmap、Hyperloglog、GEO案例、布隆过滤器

文章目录 面试题常见统计类型聚合统计排序统计二值统计基数统计 Hyperloglog专有名词UV&#xff08;Unique Visitor&#xff09;独立访客PV&#xff08;Page View&#xff09;页面浏览量DAU&#xff08;Daily Active User&#xff09;日活跃用户量MAU&#xff08;Monthly Activ…

人工智能 — 数字图像

目录 一、图像1、像素2、图像分辨率3、RGB 模型4、灰度5、通道6、对比度7、RGB 转化为 Gray8、RGB 值转化为浮点数9、二值化10、常用视觉库11、频率12、幅值 二、图像的取样与量化1、数字图像2、取样3、量化 三、上采样与下采样1、上采样&#xff08;upsampling&#xff09;2、…

Encoder-decoder 与Decoder-only 模型之间的使用区别

承接上文&#xff1a;Transformer Encoder-Decoer 结构回顾 笔者以huggingface T5 transformer 对encoder-decoder 模型进行了简单的回顾。 由于笔者最近使用decoder-only模型时发现&#xff0c;其使用细节和encoder-decoder有着非常大的区别&#xff1b;而huggingface的接口为…

解决SpringAMQP工作队列模型程序报错:WARN 48068:Failed to declare queue: simple.queue

这里写目录标题 1.运行环境2.报错信息3.解决方案4.查看解决之后的效果 1.运行环境 使用docker运行了RabbitMQ的服务器&#xff1a; 在idea中导入springAMQP的jar包&#xff0c;分别编写了子模块生产者publisher&#xff0c;消费者consumer&#xff1a; 1.在publisher中运行测试…

Excel Ctrl + E快捷键 批量合并提取数据

目录 一. 合并数据二. 提取数据 Ctrl L 只是快捷键&#xff0c;在数据面板中有快速填充的按钮。 一. 合并数据 &#x1f914;有如图所示的数据&#xff0c;现在想批量的把姓名和电话合在一起 &#x1f9d0;先把要处理的数据手动复制到一起&#xff0c;然后按下 Ctrl E 就可以…

Element table 实现表格行、列拖拽功能

安装包 npm install sortablejs --save <template><div class"draggable" style"padding: 20px"><el-table row-key"id" :data"tableData" style"width: 100%" border><el-table-columnv-for"(it…

【C++私房菜】面向对象中的多重继承以及菱形继承

文章目录 一、多重继承1、多重继承概念2、派生类构造函数和析构函数 二、菱形继承和虚继承2、虚继承后的构造函数和析构函数 三、has-a 与 is-a 一、多重继承 1、多重继承概念 **多重继承&#xff08;multiple inheritance&#xff09;**是指从多个直接基类中产生派生类的能力…

Stable Diffusion 模型分享:AstrAnime(Astr动画)

本文收录于《AI绘画从入门到精通》专栏&#xff0c;专栏总目录&#xff1a;点这里。 文章目录 模型介绍生成案例案例一案例二案例三案例四案例五 下载地址 模型介绍 AstrAnime 是一个动漫模型&#xff0c;画风色彩鲜明&#xff0c;擅长绘制漂亮的小姐姐。 条目内容类型大模型…

uniapp实现全局悬浮框

uniapp实现全局悬浮框(按钮,页面,图片自行设置) 可拖动 话不多说直接上干货 1,在components新建组件(省去了每个页面都要引用组件的麻烦) 2,实现代码 <template><view class"call-plate" :style"top: top px;left: left px;" touchmove&quo…

【目标检测新SOTA!v7 v4作者新作!】YOLO v9 思路复现 + 全流程优化

YOLO v9 思路复现 全流程优化 提出背景&#xff1a;深层网络的 信息丢失、梯度流偏差YOLO v9 设计逻辑可编程梯度信息&#xff08;PGI&#xff09;&#xff1a;使用PGI改善训练过程广义高效层聚合网络&#xff08;GELAN&#xff09;&#xff1a;使用GELAN改进架构 对比其他解法…

V2X与ETC到底有什么不同?

作者介绍 新春假期刚刚结束&#xff0c;大家在返程路上是否会因为堵车发愁&#xff1f;尤其是在假期结束后高速不再免费&#xff0c;人工收费口大排长队&#xff0c;这时大家是否会感慨ETC&#xff08;Electronic Toll Collection&#xff0c;电子不停车收费&#xff09;技术为…

如何在Shopee平台上优化饰品类目选品?

在Shopee这样竞争激烈的电商平台上&#xff0c;针对饰品类目进行选品是一项需要精心策划和执行的任务。卖家们需要通过深入的市场分析和精准的策略&#xff0c;才能在激烈的竞争中脱颖而出&#xff0c;提高产品的曝光度和销售业绩。下面将介绍一些在Shopee平台上优化饰品类目选…

【高德地图】Android搭建3D高德地图详细教

&#x1f4d6;Android搭建3D高德地图详细教程 &#x1f4d6;第1章 高德地图介绍✅了解高德地图✅2D地图与3D地图 &#x1f4d6;第2章 搭建3D地图并显示✅第 1 步&#xff1a;创建 Android 项目✅第 2 步&#xff1a;获取高德Key✅第 3 步&#xff1a;下载地图SDK✅第 4 步&…

发现了一个超赞的办公利器!ONLYOFFICE 文档 8.0 强势登场!

迎接 ONLYOFFICE 文档 v8.0发布后的全新升级&#xff01;现在&#xff0c;适用于 Linux、Windows 和 macOS 的免费 ONLYOFFICE 桌面应用程序更加强大&#xff01;全新的 RTL 界面、本地界面主题、与 Moodle 的集成等实用功能&#xff0c;让你的办公体验更加出色&#xff01;全新…

system V 共享内存

1.共享内存的原理 要理解共享内存的原理&#xff0c;首先我们得记起进程间通信的前提&#xff1a;必须让不同的进程看到同一份资源&#xff08;必须由OS提供&#xff09; 我们都知道进程都会有自己的进程地址空间&#xff0c;然后都会通过页表与物理内存进行映射&#xff0c;…

springboot214基于springboot的多媒体素材库的开发与应用

多媒体素材库的设计与实现 摘要 近年来&#xff0c;信息化管理行业的不断兴起&#xff0c;使得人们的日常生活越来越离不开计算机和互联网技术。首先&#xff0c;根据收集到的用户需求分析&#xff0c;对设计系统有一个初步的认识与了解&#xff0c;确定多媒体素材库的总体功…

vue源码分析之nextTick源码分析-逐行逐析-错误分析

nextTick的使用背景 在vue项目中&#xff0c;经常会使用到nextTick这个api&#xff0c;一直在猜想其是怎么实现的&#xff0c;今天有幸研读了下&#xff0c;虽然源码又些许问题&#xff0c;但仍值得借鉴 核心源码解析 判断当前环境使用最合适的API并保存函数 promise 判断…

SD-WAN组网:打造跨国企业无缝网络连接体验

在数字化转型的时代&#xff0c;越来越多的企业迈向国际化&#xff0c;然而&#xff0c;由于自建网络架构的限制和跨域网络的复杂性&#xff0c;企业在不同地理位置的站点之间难以实现高效的数据互通和协作。这就是为什么SD-WAN成为跨国企业组网的理想选择的原因。 跨国企业常见…