【数据结构】排序(2)

目录

一、快速排序:

1、hoare(霍尔)版本:

2、挖坑法:

3、前后指针法:

4、非递归实现快速排序:

二、归并排序:

1、递归实现归并排序:

2、非递归实现归并排序: 

三、排序算法整体总结:


一、快速排序:

基本思想:

任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。

1、hoare(霍尔)版本:

运用递归原理,定义一个keyi(基准值),然后左找大,右找小,然后递归基准值的左右区间。 

具体思路:

  1. 选定一个基准值,可以是a[0] / a[Size-1]。
  2. 确定两个指针 left 和 right 分别从左边和右边向中间遍历数组。
  3. 例如:选最左边的为基准值则right先走,遇到比基准值大的就停下,然后left走,遇到比基准值小的就停下,然后交换left与right位置对应的值。(如果以最右边为基准值,则left先走,right后走)
  4. 重复以上步骤,直到left = right ,最后将基准值与left(right)位置的值交换。

这样下来基准值所在的位置就是它排序后正确所在的位置,因为左边的所有数都比他小,右边的所有数都比他大。

然后再递归以基准值为界限的左右两个区间中的数,当区间中没有元素时,排序完成。

代码实现:

// 三数选中位数返回下标,作为一个快排的小优化,(不用也可以,不影响后面的代码)
int GetMedian(int* a, int begin, int end)
{int midi = (begin + end) / 2;// begin end midi三个数选中位数if (a[begin] < a[midi]){if (a[midi] < a[end])return midi;else if (a[begin] > a[end])return begin;elsereturn end;}else{if (a[end] > a[begin])return begin;else if (a[midi] > a[end])return midi;elsereturn end;}
}// hoare(霍尔)方法
int PartSort1(int* a, int begin, int end)// begin end 为下标
{int median = GetMedian(a, begin, end);// 选中位数返回下标swap(a[median], a[begin]); // 这里的swap使用的是库函数中写好了的,// 使用自己写的注意形参与实参int left = begin, right = end;int keyi = begin;while (left < right){// 右边找小while (left<right && a[right] >= a[keyi]){right--;}// 左边找大while (left < right && a[left] <= a[keyi]){left++;}swap(a[left], a[right]);}// 交换基准值和 left与right 交汇位置的值swap(a[left], a[keyi]);// 返回基准值的下标return left;
}void QuickSort(int* a, int begin, int end) // begin end 为下标
{if (begin >= end){return;}int keyi = PartSort1(a, begin, end);	// 继续递归keyi(已排好序的值)的左右区间QuickSort(a, begin, keyi - 1);QuickSort(a, keyi + 1, end);
}

2、挖坑法:

具体思路:

  1. 从最左边选定一个基准值取出,然后这个位置就为“坑”。
  2. 还是运用左右指针,当右指针遇到比基准值小的值时,将该值放入坑中,然后右指针指向的位置就是新的“坑”,然后移动左指针,当左指针遇到比基准值大的值时,同样将该值放入坑中,然后左指针指向的位置就是新的“坑”,然后再移动右指针,以此反复直到左右指针相遇。
  3. 当左右指针相遇时,将基准值放入最后的“坑”中。

然后再递归以基准值为界限的左右两个区间中的数,当区间中没有元素时,排序完成。

 代码实现:

int PartSort1(int* a, int begin, int end)// begin end 为下标
{int median = GetMedian(a, begin, end);// 选中位数返回下标swap(a[median], a[begin]); // 这里的swap使用的是库函数中写好了的,// 使用自己写的注意形参与实参int left = begin, right = end;int keyi = begin;while (left < right){// 右边找小while (left<right && a[right] >= a[keyi]){right--;}// 左边找大while (left < right && a[left] <= a[keyi]){left++;}swap(a[left], a[right]);}// 交换基准值和 left与right 交汇位置的值swap(a[left], a[keyi]);// 返回基准值的下标return left;
}// 挖坑法
int PartSort2(int* a, int begin, int end)
{int median = GetMedian(a, begin, end);// 选中位数返回下标swap(a[median], a[begin]); // 这里的swap使用的是库函数中写好了的,// 使用自己写的注意形参与实参// 定义基准值与“坑位”int keyi = a[begin];int hole = begin;// begin 与 end 充当左右指针while (begin < end){// 右边找小,填到左边的坑while (begin < end && a[end] >= keyi){end--;}// 填坑a[hole] = a[end];hole = end;// 左边找大,填到右边的坑while (begin < end && a[begin] <= keyi){begin++;}// 填坑a[hole] = a[begin];hole = begin;}a[hole] = keyi;return hole;
}void QuickSort(int* a, int begin, int end) // begin end 为下标
{if (begin >= end){return;}int keyi = PartSort2(a, begin, end);	// 继续递归keyi(已排好序的值)的左右区间QuickSort(a, begin, keyi - 1);QuickSort(a, keyi + 1, end);
}

3、前后指针法:

具体思路:

  1. 定义一个基准值key,指针 prev 和 cur。(cur = prev + 1)
  2. cur先走,遇到比key大的值,++cur。
  3. cur遇到比key小的值,++prev,交换prev和cur位置的值。
  4. 以此反复直到cur走出数组范围。
  5. 最后交换key和prev的值

然后再递归以基准值为界限的左右两个区间中的数,当区间中没有元素时,排序完成。

代码实现:

int PartSort3(int* a, int begin, int end)
{int median = GetMedian(a, begin, end);// 选中位数返回下标swap(a[median], a[begin]); // 这里的swap使用的是库函数中写好了的,// 使用自己写的注意形参与实参// 定义基准值、前后指针int keyi = begin;int prev = begin, cur = prev + 1;while (cur <= end){// 保留keyi下标的值if (a[cur] < a[keyi] && ++prev != cur)// 避免自己给自己赋值的情况,{swap(a[prev], a[cur]);}++cur;}swap(a[prev], a[keyi]);// 因为交换了位置,所以下标prev的位置才是基准值return prev;
}void QuickSort(int* a, int begin, int end) // begin end 为下标
{if (begin >= end){return;}int keyi = PartSort3(a, begin, end);	// 继续递归keyi(已排好序的值)的左右区间QuickSort(a, begin, keyi - 1);QuickSort(a, keyi + 1, end);
}

4、非递归实现快速排序:

非递归实现快速排序就需要运用到栈,栈中存放的是需要排序的左右区间。其大致思想是与递归实现的思路类似。

具体思路:

  1. 将待排序数组的左右下标入栈。
  2. 若栈不为空,分两次取出栈顶元素,分为闭区间的左右界限。
  3. 将区间中的元素按照【上述三种方法(霍尔、挖坑、前后指针)的任意一种】得到基准值的位置
  4. 再以基准值为界限,当基准值左右区间中有元素,将区间入栈

然后重复上述步骤直到栈中没有元素时,排序完成。

代码实现:

void QuickSortNonr(int* a, int begin, int end)
{// 这里使用的是C++标准模板库的stack,如果是C语言的话需手搓一个栈出来// 但基本的思路是一样的,这里为了方便就不手搓哩// 定义一个栈并初始化stack<int> s;// 将数组的左右下标入栈s.push(end);s.push(begin);// 当栈不为空时,继续排序while (!s.empty()){int left = s.top();s.pop();int right = s.top();s.pop();// 获取基准值的位置(下标)int keyi = PartSort1(a, left, right);// [left, keyi-1] keyi [keyi+1, right]// 以基准值为界限,若基准值左右区间中有元素,则将区间入栈if (left < keyi - 1){s.push(keyi - 1);s.push(left);}if (keyi + 1 < right){s.push(right);s.push(keyi + 1);}}// 如果是手搓的栈,记得释放内存
}

快速排序的特性总结:

  1. 快速排序整体的综合性能和使用场景都是比较好的。

  2. 时间复杂度:O(N*logN)

  3. 空间复杂度:O(logN)

  4. 稳定性:不稳定

二、归并排序:

归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,采用分治法(Divide and Conquer)的一个非常典型的应用。 

基本思想:

将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

本质为:

依次将数组划分,直到每个序列中只有一个数字。一个数字默认有序,然后再依次合并排序。

1、递归实现归并排序:

代码实现:

void _MergeSort(int* a, int begin, int end, int* tmp)
{// 当区间中没有元素时将不再进行合并if (begin >= end){return;}// 划分数组,进行递归操作int mid = (begin + end) / 2;_MergeSort(a, begin, mid, tmp);		// 划分左区间_MergeSort(a, mid + 1, end, tmp); // 划分右区间// 两个有序序列进行合并int begin1 = begin, end1 = mid;int begin2 = mid + 1, end2 = end;int i = begin;while (begin1 <= end1 && begin2 <= end2)// 结束条件为一个序列为空就停止。{if (a[begin1] < a[begin2]){tmp[i++] = a[begin1++];}else{tmp[i++] = a[begin2++];}}// 进行上一步的操作后会有一个有序序列不为空,将其合并进tmpwhile (begin1 <= end1){tmp[i++] = a[begin1++];}while (begin2 <= end2){tmp[i++] = a[begin2++];}//将合并后的序列拷贝到原数组中memcpy(a + begin, tmp + begin, sizeof(int) * (end - begin + 1));}void MergeSort(int* a, int Size)
{//因为需要将两个有序序列进行合并,所以需要开辟相同空间int* tmp = (int*)malloc(sizeof(int) * Size);assert(tmp);_MergeSort(a, 0, Size - 1, tmp);free(tmp);
}

2、非递归实现归并排序: 

非递归实现的思想与递归实现的思想是类似的,但序列划分过程和递归是相反的,并不是每次一分为二, 而是先拆分为一个元素一组、再两个元素一组进行排序、再四个元素一组进行排序....以此类推,直到将所有的元素排序完。

代码实现:

void MergeSortNonR(int* a, int Size)
{int* tmp = (int*)malloc(sizeof(int) * Size);assert(tmp);// 先将元素拆为一个一组int gap = 1;while (gap < Size) // 当gap=Size时就是一组序列{// 每两组进行一个合并排序int index = 0; // 记录tmp数组中元素的下标for (int i = 0; i < Size; i += 2 * gap)// 两组中元素的个数为2*gap{// 控制两组的边界int begin1 = i, end1 = i + gap - 1;int begin2 = i + gap, end2 = i + 2 * gap - 1;// 当原数组中元素个数不是2^n时,最后两组会出现元素不匹配的情况// 情况1: 当 end1 >= Size 或 begin2 >= Size 时即最后两组元素只剩下一组时不需要进行合并排序if (end1 >= Size || begin2 >= Size){break;}// 情况2: end2 >= Size 时,即最后两组中,第二组的元素个数小于第一组,则需要调整第二组的边界if (end2 >= Size){end2 = Size - 1;}// 进行合并排序while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[index++] = a[begin1++];}else{tmp[index++] = a[begin2++];}}while (begin1 <= end1){tmp[index++] = a[begin1++];}while (begin2 <= end2){tmp[index++] = a[begin2++];}//一趟排序完后,将有序序列拷贝到原数组中memcpy(a, tmp, sizeof(int) * index);}// 更新gap变为二倍gap *= 2;}free(tmp);tmp = NULL;
}

归并排序的特性总结:

  1. 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。
  2. 时间复杂度:O(N*logN)
  3. 空间复杂度:O(N)
  4. 稳定性:稳定

三、排序算法整体总结:

   稳定性:指数组中相同元素在排序后相对位置不发生变化。

 补充:

 1、在希尔排序中,增量的选择会影响其时间复杂度。

 2、序列初始顺序在一些算法中也会影响其时间复杂度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2803401.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

实在智能签约国内头部燃气集团:用Agent加速数智化深入,量利双升建设智慧燃气

燃气是我国四大能源产业之一&#xff0c;是推进国民经济建设与生态保护协同发展的主战场&#xff0c;高速的发展机遇下伴随着诸多挑战&#xff1a;随着业务规模扩大&#xff0c;运营工作量和复杂度不断上升&#xff0c;考验企业的业态模式能力&#xff1b;运营各环节需投入大量…

基于springboot+vue的智能推荐的卫生健康系统(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…

你还不会大厂必考的10个经典排序算法吗?

公众号&#xff1a;程序员白特&#xff0c;欢迎一起交流学习~ 前言 众所周知&#xff0c;10个经典排序算法在大厂的校招、社招面试中频繁出现&#xff0c;那么今天我们就来用JS语言实现一下这10个经典排序算法吧。 概念 排序算法&#xff1a; 排序算法是《数据结构与算法》中…

vscode远程调试服务器的Python代码

目录 1 配置vscode远程阅读代码 2 打开conda环境 3 配置相应的调试环境 4 开始调试 这篇博客首先参考了我自己之前的两篇博客 vscode怎么查看python库的源代码/vscode打开conda环境 ubuntu上安装vscode&#xff0c;并远程开发与远程调试服务器代码 1 配置vscode远程阅读…

Intel PT简介以及perf 使用 Intel pt

文章目录 前言一、工作原理二、追踪执行流程三、追踪定时信息四、perf使用 intel pt4.1 perf record4.2 perf report4.3 perf script 五、与 Intel LBR 比较六、perf 对 Intel pt 的支持参考资料 前言 代码插装是最古老的性能分析方法之一。我们经常使用它。在函数开头插入pri…

Oerlikon欧瑞康LPCVD system操作使用说明

Oerlikon欧瑞康LPCVD system操作使用说明

C++从入门到精通 第五章(指针与引用)

写在前面&#xff1a; 本系列专栏主要介绍C的相关知识&#xff0c;思路以下面的参考链接教程为主&#xff0c;大部分笔记也出自该教程&#xff0c;笔者的原创部分主要在示例代码的注释部分。除了参考下面的链接教程以外&#xff0c;笔者还参考了其它的一些C教材&#xff08;比…

怎么把ppt压缩到10m以内?立刻学会~

在分享PPT文件时&#xff0c;文件大小通常会成为一个重要考虑因素。过大的文件不仅会增加传输和下载时间&#xff0c;还可能遇到一些网络限制。本文将介绍如何将PPT文件压缩到10M以内的方法&#xff0c;并详细介绍使用压缩工具的解决方案。 使用压缩工具的解决方法 工具一&…

http协议基础与Apache的简单介绍

一、相关介绍&#xff1a; 互联网&#xff1a;是网络的网络&#xff0c;是所有类型网络的母集因特网&#xff1a;世界上最大的互联网网络。即因特网概念从属于互联网概念。习惯上&#xff0c;大家把连接在因特网上的计算机都成为主机。万维网&#xff1a;WWW&#xff08;world…

Excel面试题及答案(1)

1.辅助列添加,快速填充方式填充隔行的编号;定位条件定位到空值后,右击---插入整行 2.利用通配符计算A3:A9含有车间的单元格个数(保留计算公式)。 3.利用身份证号提取 “性别”、“年月日”、“年龄” 性别:利用mid()方法,添加了一列辅助列,根据提取身份证后面第2位…

【Python笔记-设计模式】工厂模式

一、说明 (一) 解决问题 提供了一种方式&#xff0c;在不指定具体类将要创建的情况下&#xff0c;将类的实例化操作延迟到子类中完成。可以实现客户端代码与具体类实现之间的解耦&#xff0c;使得系统更加灵活、可扩展和可维护。 (二) 使用场景 希望复用现有对象来节省系统…

Leetcoder Day17| 二叉树 part06

语言&#xff1a;Java/C 654.最大二叉树 给定一个不含重复元素的整数数组。一个以此数组构建的最大二叉树定义如下&#xff1a; 二叉树的根是数组中的最大元素。左子树是通过数组中最大值左边部分构造出的最大二叉树。右子树是通过数组中最大值右边部分构造出的最大二叉树。 …

力扣随笔之两数之和 Ⅱ -输入有序数组(中等167)

思路&#xff1a;在递增数组中找出满足相加之和等于目标数 定义左右两个指针&#xff08;下标&#xff09;从数组两边开始遍历&#xff0c;若左右指针所指数字之和大于目标数&#xff0c;则将右指针自减&#xff0c;若左右指针所指数字之和小于目标数&#xff0c;则左指针自加&…

petalinux_zynq7 驱动DAC以及ADC模块之五:nodejs+vue3实现web网页波形显示

前文&#xff1a; petalinux_zynq7 C语言驱动DAC以及ADC模块之一&#xff1a;建立IPhttps://blog.csdn.net/qq_27158179/article/details/136234296petalinux_zynq7 C语言驱动DAC以及ADC模块之二&#xff1a;petalinuxhttps://blog.csdn.net/qq_27158179/article/details/1362…

【Unity】MySql +Navicat 安装教程

问题描述 在使用Unity开发的时候&#xff0c;有的时候我们是需要使用Mysql数据库的&#xff0c;本教程使用的MySql 和Navicat均为免安装版 ❶mysql安装 1.下载mysql解压至任意目录&#xff0c;此处以“C:\mysql-5.6.39-winx64”为例. mysql百度云连接&#xff1a; 链接&…

mybatis 集成neo4j实现

文章目录 前言一、引入jar包依赖二、配置 application.properties三、Mybatis Neo4j分页插件四、Mybatis Neo4j自定义转换器handler五、MybatisNeo4j代码示例总结 前言 MyBatis是一个基于Java语言的持久层框架&#xff0c;它通过XML描述符或注解将对象与存储过程或SQL语句进行…

有名管道的大小

管道&#xff1a;有名管道、无名管道 通信&#xff1a; 单工通信&#xff1a;固定的读端和写端 -- 广播 半双工通信&#xff1a;同一时刻&#xff0c;只有有一方写&#xff0c;另外一方读:对讲机 全双工通信&#xff1a;随时两方都能读写 -- 电话 特点&#xff1a; 管道属…

小红书x-s算法及补环境 单旋转验证码

前言 大家好呀!新的一年,先祝大家新年快乐咯.祝大家逆向,风控都一把过咯. 新年第一篇文章,后续会持续更新哦! 春晚见证了中国经济的新风口,今年春晚互联网企业赞助商就两家,小红书和京东.小红书类似国外的ins,有预感未来小红书会大火,所以写了这篇文章,有需要的加我,联系方式…

统计图扇形图绘制方法

统计图扇形图绘制方法 常用的统计图有条形图、柱形图、折线图、曲线图、饼图、环形图、扇形图。 前几类图比较容易绘制&#xff0c;饼图环形图绘制较难。 还有一种扇形图的绘制也较难&#xff0c;扇形图的各个变类&#xff0c;饼图、环形图、半圆图、玫瑰图等都是统计图扇形的变…

线程的同步(synchronized的原理和用法,解决线程同步时的通信问题)

线程的同步锁&#xff08;synchronized&#xff09; 为什么会出现线程的同步锁&#xff1f; 因为JVM虚拟机是抢占调度模型&#xff0c;当多个线程在同时访问一个资源时会发生两个线程争抢一个资源&#xff0c;在一个线程没有执行结束时&#xff0c;另一个线程抢到资源&#x…