离线运行Llama3:本地部署终极指南_liama2 本地部署

4月18日,Meta在官方博客官宣了Llama3,标志着人工智能领域迈向了一个重要的飞跃。经过笔者的个人体验,Llama3 8B效果已经超越GPT-3.5,最为重要的是,Llama3是开源的,我们可以自己部署!

本文和大家分享一下如何在个人电脑上部署Llama3,拥有你自己的GPT-3.5+!

很多读者担心本地部署时个人电脑的硬件配置不够,实际上这种担心是多余的,笔者使用的是MacBook M2 Pro (2023款), 主要硬件配置如下:

  • 10核CPU
  • 16G内存

部署步骤大致如下:

  • 安装Ollama
  • 下载Llama3
  • 安装Node.js
  • 部署WebUI

【一一AGI大模型学习 所有资源获取处一一】

①人工智能/大模型学习路线

②AI产品经理入门指南

③大模型方向必读书籍PDF版

④超详细海量大模型实战项目

⑤LLM大模型系统学习教程

⑥640套-AI大模型报告合集

⑦从0-1入门大模型教程视频

⑧AGI大模型技术公开课名额

安装Ollama

Ollama可以简单理解为客户端,实现和大模型的交互,读者可以前往[ollama.com/download,根据…]

WX20240420-085342@2x

下载之后打开,直接点击Next以及Install安装ollama到命令行。安装完成后界面上会提示ollama run llama2,不需要执行这条命令,因为我们要安装llama3

image.png

下载Llama3

打开新的终端/命令行窗口,执行以下命令:

ollama run llama3

程序会自动下载Llama3的模型文件,默认是8B,也就80亿参数版本,个人电脑完全可以运行。

成功下载模型后会进入交互界面,我们可以直接在终端进行提问,比如笔者问的Who are you?,Llama3几乎是秒回答。

➜  Projects ollama run llama3
>>> who are you?
I'm LLaMA, a large language model trained by a team of researcher at Meta 
AI. I'm here to chat with you and answer any questions you may have.I've been trained on a massive dataset of text from the internet and can 
generate human-like responses to a wide range of topics and questions. My 
training data includes but is not limited to:* Web pages
* Books
* Articles
* Research papers
* ConversationsI'm constantly learning and improving my responses based on the 
conversations I have with users like you.So, what's on your mind? Do you have a question or topic you'd like to 
discuss?

安装Node.js

支持Ollama的WebUI非常多,笔者体验过热度第一的那个WebUI

image-20240420090338877

设置国内NPM镜像

官方的NPM源国内访问有点慢,笔者推荐国内用户使用腾讯NPM源([mirrors.cloud.tencent.com/npm/),之前笔者使…]

打开终端执行以下命令设置NPM使用腾讯源:

npm config set registry http://mirrors.cloud.tencent.com/npm/

部署WebUI

打开终端,执行以下命令部署WebUI:

git clone https://github.com/ollama-webui/ollama-webui-lite.git
cd ollama-webui-lite
npm install
npm run dev

提示如下,WebUI已经在本地3000端口进行监听:

> ollama-webui-lite@0.0.1 dev
> vite dev --host --port 3000VITE v4.5.2  ready in 765 ms➜  Local:   http://localhost:3000/

打开浏览器访问[http://localhost:3000,可以看到如下图所示界面。默认情况下是没有选择模型的,需要点击截图所示箭头处选择模型。]
image-20240420091143684

笔者给模型提了一个编写一个Golang Echo Server的例子,大概5秒就开始打印结果,速度非常不错。

image-20240420091325732

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解
  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望
阶段3:AI大模型应用架构实践
  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景
学习计划:
  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3223829.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

QT入门看这一篇就够(详解含qt源码)

目录 一、Qt概述 1.1 什么是Qt 1.2 Qt的发展史 1.3 Qt的优势 1.4 Qt版本 1.5 成功案例 二、创建Qt项目 2.1 使用向导创建 2.2 一个最简单的Qt应用程序 2.2.1 main函数中 2.2.2 类头文件 2.3 .pro文件 2.4 命名规范 2.5 QtCreator常用快捷键 三、Qt按钮小程序 …

北京大学长安汽车发布毫米波与相机融合模型RCBEVDet:最快能达到每秒28帧

Abstract 三维目标检测是自动驾驶中的关键任务之一。为了在实际应用中降低成本,提出了利用低成本的多视角相机进行3D目标检测,以取代昂贵的LiDAR传感器。然而,仅依靠相机很难实现高精度和鲁棒性的3D目标检测。解决这一问题的有效方法是将多视…

游戏AI的创造思路-技术基础-蒙特卡洛树搜索(1)

本篇介绍蒙特卡洛树搜索算法,AlphaGo用于围棋计算的应用就是基于蒙特卡洛树搜索研发的~~~ 目录 1. 定义 2. 发展历史 3. 公式和函数 3.1.算法的公式和函数 3.2. Python实现公式和函数 4. 运行原理 4.1. 运行原理 4.2. 各步骤用Python代码 5. 优缺点和缺陷的…

一文实践强化学习训练游戏ai--doom枪战游戏实践

一文实践强化学习训练游戏ai–doom枪战游戏实践 上次文章写道下载doom的环境并尝试了简单的操作,这次让我们来进行对象化和训练、验证,如果你有基础,可以直接阅读本文,不然请你先阅读Doom基础知识,其中包含了下载、动作…

需求分析|泳道图 ProcessOn教学

文章目录 1.为什么使用泳道图2.具体例子一、如何绘制确定好泳道中枢的角色在中央基于事实来绘制过程不要纠结美观先画主干处理流程再画分支处理流程一个图表达不完,切分子流程过程数不超25 ,A4纸的幅面处理过程过程用动词短语最后美化并加上序号酌情加上…

vb.netcad二开自学笔记8:界面之任务窗格

使用net可以创建一个类似属性面板的自定义的任务窗格,从而实现应用程序更丰富的人机交互。 1、添加一个自定义控件 2、在前面创建的代码框架内增加一个命令函数ShowMyPalette Imports System.Windows.Media.Imaging Imports Autodesk.AutoCAD.ApplicationServices …

解码技术债:AI代码助手与智能体的革新之道

技术债 技术债可能来源于多种原因,比如时间压力、资源限制、技术选型不当等。它可以表现为代码中的临时性修补、未能彻底解决的设计问题、缺乏文档或测试覆盖等。虽然技术债可以帮助快速推进项目进度,但长期来看,它会增加软件维护的成本和风险…

PID控制与模糊PID控制的比较

一、PID控制器的设计 1.PID控制原理图: PID控制其结构框图如下图所示: 图1:PID控制器结构框图 2.PID控制器传递函数的一般表达式 PID控制器传递函数的一般表达形式为: 其中kp为比例增益;ki为积分增益;k…

html H5 dialog弹窗学习,实现弹窗显示内容 替代confirm、alert

html H5 dialog弹窗学习,实现弹窗内容 替代confirm 框架使用的mui,使用mui.confirm() 弹窗内容过多时,弹窗被撑的到屏幕外去了,使用H5 dialog 标签自定义一个固定大小的弹窗,内容过多时可下拉显示 效果展示 隐私政策内容很多,可以下拉显示 代码 myDialog.css dialog{p…

2024年信息系统项目管理师1批次上午客观题参考答案及解析(3)

51、探索各种选项,权衡包括时间与成本、质量与成本、风险与进度、进度与质量等多种因素,在整个过程中,舍弃无效或次优的替代方案,这种不确定性应对方法是()。 A.集合设计 B.坚韧性 C.多种结果…

odoo17 常见升级问题

通用问题 模型名变更 字段变更 方法名变更 方法参数变更 xml数据结构定义变化 xml的id变更 view视图变化,导致xpath路径出差 template结构变化,,导致xpath路径出差,或者id不存在 升16问题 前端owl的架构变化 升17问题 前端 标…

db期末复习自用[应试向 附习题]

第一章 数据库系统实现整体数据的结构化,主要特征之一,是db区别于文件系统的本质区别。 数据库系统三个阶段:人工、文件、数据库系统。 数据库管理系统的功能:数据库定义、操纵 、(保护、存储、维护)、数…

招投标信息采集系统:让您的企业始终站在行业前沿

一、为何招投标信息如此关键? 在经济全球化的大背景下,招投标活动日益频繁,成为企业获取项目、拓展市场的主流方式之一。招投标信息采集,作为企业战略决策的前置环节,其重要性不言而喻。它不仅关乎企业能否第一时间发…

Open3D 点对面的ICP算法配准(精配准)

目录 一、概述 1.1核心思想 1.2实现步骤 二、代码实现 2.1关键函数 2.2完整代码 三、实现效果 3.1原始点云 3.2配准后点云 3.3计算数据 一、概述 基于点对面的ICP(Iterative Closest Point)配准算法是ICP的一种变体,它通过最小化源…

昇思MindSpore学习总结十二 —— ShuffleNet图像分类

当前案例不支持在GPU设备上静态图模式运行,其他模式运行皆支持。 1、ShuffleNet网络介绍 ShuffleNetV1是旷视科技提出的一种计算高效的CNN模型,和MobileNet, SqueezeNet等一样主要应用在移动端,所以模型的设计目标就是利用有限的计算资源来达…

数学建模中常用的数据处理方法

常用的数据处理方法 本文参考 B站西电数模协会的讲解视频 ,只作笔记提纲,想要详细学习具体内容请观看 up 的学习视频。一般来说国赛的 C 题一般数据量比较大。 这里介绍以下两种方法: 数据预处理方法 数据分析方法 数据预处理方法 1. 数据…

【电脑应用技巧】如何寻找电脑应用的安装包华为电脑、平板和手机资源交换

电脑的初学者可能会直接用【百度】搜索电脑应用程序的安装包,但是这样找到的电脑应用程序安装包经常会被加入木马或者强制捆绑一些不需要的应用装入电脑。 今天告诉大家一个得到干净电脑应用程序安装包的方法,就是用【联想的应用商店】。联想电脑我是一点…

alibabacloud学习笔记11

讲解什么是配置中心及使用前后的好处 讲解Nacos作为配置中心面板介绍 官方文档 Nacos config alibaba/spring-cloud-alibaba Wiki GitHub 加入依赖: 订单服务和视频服务也加上这个依赖。 讲解Nacos作为配置中心实战 订单服务添加配置。 我们注释掉之前的配置。 …

现代化3D Web轻量引擎HOOPS Communicator:基于ESM的代码库转型!

HOOPS Communicator自2024.2.0版本起,向基于ECMAScript Modules (ESM)的系统迁移的决策和技术细节。文章分析了这一转型对代码组织、封装、依赖管理、性能以及与现代JavaScript开发实践兼容性的积极影响,并讨论了IIFE和UMD的兼容性支持。 引言 随着Jav…

Dynamics365 UCI下的高级查找(不要留恋Classic了)

UCI界面已经用了多年了,在Classic下的的高级查找按钮(漏斗icon)已不见踪影 但因为使用习惯问题,还是有人会通过右上角高级设置,进入Classic界面找到漏斗Icon来使用高级查找 但新的UCI风格下已经没了高级查找的概念,取而代之的是基…