2024年数维杯数学建模B题思路

文章目录

  • 1 赛题思路
  • 2 比赛日期和时间
  • 3 竞赛信息
  • 4 建模常见问题类型
    • 4.1 分类问题
    • 4.2 优化问题
    • 4.3 预测问题
    • 4.4 评价问题
  • 5 建模资料

1 赛题思路

(赛题出来以后第一时间在CSDN分享)
https://blog.csdn.net/dc_sinor?type=blog

2 比赛日期和时间

报名截止时间:2024年5月10日(周五)06:00

竞赛开始时间:2024年5月10日(周五)08:00

竞赛结束时间:2024年5月13日(周一)09:00

竞赛结果公示时间:2024年7月中旬或之前

3 竞赛信息

数维杯大学生数学建模挑战赛每年分为两场,每年上半年为数维杯国赛(5月,俗称小国赛),下半年为数维杯国际赛(11月),2023年第八届数维杯大学生数学建模挑战赛共有近1.4万名学生参赛,参赛队伍来自国内外728所高校,39所985院校以及104所211院校。参赛高校覆盖北京大学、清华大学、复旦大学、浙江大学、华中科技大学、天津大学、上海交通大学等高校。除中国大陆高校外,本次竞赛也吸引了来自世界一流圣彼得堡国立电子技术大学等境外高校参赛。竞赛累计参赛高校千余所,参赛人数超14万以上人,经过八年多的发展,竞赛已成为国内外极具影响力的基础学科与应用科技的赛事。

竞赛分为研究生组、本科生组、专科生组,竞赛题目共3道(A题、B题、C 题)每个参赛队从三个赛题中任选一题作答,竞赛题目一般是来源于各行业并 经过当简化的实际问题。

4 建模常见问题类型

趁现在赛题还没更新,A君给大家汇总一下建模经常使用到的数学模型,题目八九不离十基本属于一下四种问题,对应的解法A君也相应给出

分别为:

  • 分类模型
  • 优化模型
  • 预测模型
  • 评价模型

4.1 分类问题

判别分析:

又称“分辨法”,是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。

其基本原理是按照一定的判别准则,建立一个或多个判别函数;用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标;据此即可确定某一样本属于何类。当得到一个新的样品数据,要确定该样品属于已知类型中哪一类,这类问题属于判别分析问题。

聚类分析:

聚类分析或聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集,这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更加短的空间距离等。

聚类分析本身不是某一种特定的算法,而是一个大体上的需要解决的任务。它可以通过不同的算法来实现,这些算法在理解集群的构成以及如何有效地找到它们等方面有很大的不同。

神经网络分类:

BP 神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。RBF(径向基)神经网络:径向基函数(RBF-Radial Basis Function)神经网络是具有单隐层的三层前馈网络。它模拟了人脑中局部调整、相互覆盖接收域的神经网络结构。感知器神经网络:是一个具有单层计算神经元的神经网络,网络的传递函数是线性阈值单元。主要用来模拟人脑的感知特征。线性神经网络:是比较简单的一种神经网络,由一个或者多个线性神经元构成。采用线性函数作为传递函数,所以输出可以是任意值。自组织神经网络:自组织神经网络包括自组织竞争网络、自组织特征映射网络、学习向量量化等网络结构形式。K近邻算法: K最近邻分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

4.2 优化问题

线性规划:

研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。建模方法:列出约束条件及目标函数;画出约束条件所表示的可行域;在可行域内求目标函数的最优解及最优值。

非线性规划:

非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个 n元实函数在一组等式或不等式的约束条件下的极值问题,且 目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是 线性函数的情形则属于线性规划。

整数规划:

规划中的变量(全部或部分)限制为整数,称为整数规划。若在线性模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法往往只适用于整数线性规划。一类要求问题的解中的全部或一部分变量为整数的数学规划。从约束条件的构成又可细分为线性,二次和非线性的整数规划。

动态规划:

包括背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等。

动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

多目标规划:

多目标规划是数学规划的一个分支。研究多于一个的目标函数在给定区域上的最优化。任何多目标规划问题,都由两个基本部分组成:

(1)两个以上的目标函数;
(2)若干个约束条件。有n个决策变量,k个目标函数, m个约束方程,则:

Z=F(X)是k维函数向量,Φ(X)是m维函数向量;G是m维常数向量;

4.3 预测问题

回归拟合预测

拟合预测是建立一个模型去逼近实际数据序列的过程,适用于发展性的体系。建立模型时,通常都要指定一个有明确意义的时间原点和时间单位。而且,当t趋向于无穷大时,模型应当仍然有意义。将拟合预测单独作为一类体系研究,其意义在于强调其唯“象”性。一个预测模型的建立,要尽可能符合实际体系,这是拟合的原则。拟合的程度可以用最小二乘方、最大拟然性、最小绝对偏差来衡量。

灰色预测

灰色预测是就灰色系统所做的预测。是一种对含有不确定因素的系统进行预测的方法。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反映预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

马尔科夫预测:是一种可以用来进行组织的内部人力资源供给预测的方法.它的基本 思想是找出过去人事变动的 规律,以此来推测未来的人事变动趋势.转换矩阵实际上是转换概率矩阵,描述的是组织中员工流入,流出和内部流动的整体形式,可以作为预测内部劳动力供给的基础.

BP神经网络预测

BP网络(Back-ProPagation Network)又称反向传播神经网络, 通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出。它是一种应用较为广泛的神经网络模型,多用于函数逼近、模型识别分类、数据压缩和时间序列预测等。

支持向量机法

支持向量机(SVM)也称为支持向量网络[1],是使用分类与回归分析来分析数据的监督学习模型及其相关的学习算法。在给定一组训练样本后,每个训练样本被标记为属于两个类别中的一个或另一个。支持向量机(SVM)的训练算法会创建一个将新的样本分配给两个类别之一的模型,使其成为非概率二元线性分类器(尽管在概率分类设置中,存在像普拉托校正这样的方法使用支持向量机)。支持向量机模型将样本表示为在空间中的映射的点,这样具有单一类别的样本能尽可能明显的间隔分开出来。所有这样新的样本映射到同一空间,就可以基于它们落在间隔的哪一侧来预测属于哪一类别。

4.4 评价问题

层次分析法

是指将一个复杂的 多目标决策问题 作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。

优劣解距离法

又称理想解法,是一种有效的多指标评价方法。这种方法通过构造评价问题的正理想解和负理想解,即各指标的最大值和最小值,通过计算每个方案到理想方案的相对贴近度,即靠近正理想解和远离负理想解的程度,来对方案进行排序,从而选出最优方案。

模糊综合评价法

是一种基于模糊数学的综合评标方法。 该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。 它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。

灰色关联分析法(灰色综合评价法)

对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。

典型相关分析法:是对互协方差矩阵的一种理解,是利用综合变量对之间的相关关系来反映两组指标之间的整体相关性的多元统计分析方法。它的基本原理是:为了从总体上把握两组指标之间的相关关系,分别在两组变量中提取有代表性的两个综合变量U1和V1(分别为两个变量组中各变量的线性组合),利用这两个综合变量之间的相关关系来反映两组指标之间的整体相关性。

主成分分析法(降维)

是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

因子分析法(降维)

因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。

BP神经网络综合评价法

是一种按误差逆传播算法训练的多层前馈网络,是应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

5 建模资料

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3019431.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

带你快速掌握Spring Task

Spring Task ⭐Spring Task 是Spirng框架提供的任务调度工具,可以按照约定的时间自动执行某个代码逻辑 📌一款定时任务框架 应用场景 信用卡信息银行贷款信息火车票信息 只要是需要定时处理的场景都可以使用Spring Task 只要有定时,就会有…

语言模型测试系列【7】

语言模型 文心一言星火认知大模型通义千问豆包360智脑百川大模型腾讯混元助手Kimi Chat商量C知道 今天看CSDN文章,看到了斐波那契数列这个有趣的数列计算,然后就在文心一言中对答了一波,给的答案很完整,而且给出来python的实现代…

刷题之不相同的字符串(卡码网模拟)

卡码网不同的字符串 #include<vector> #include<string> #include<iostream> using namespace std; int main() {int n0;cin>>n;for(int i0;i<n;i){string s;cin>>s;vector<int>hash(26,0);for(int j 0;j < s.size();j)hash[s[j…

Oracle SQL Developer导出数据库表结构,表数据,索引以及序列号等对象

通过Oracle SQL Developer软件将指定oralce数据库中的表结构&#xff0c;表数据&#xff0c;索引以及序列号等对象导出成SQL文件。 数据库版本&#xff1a;Oracle Database 11g Express Edition Release 11.2.0.2.0 - 64bit Production 软件版本&#xff1a;Oracle SQL Develo…

MySQL数据库及数据表的创建

1.创建一个名叫 db_classes 的数据库&#xff1a; 创建一个叫 db_classes 的数据库MySQL命令&#xff1a; create database db_classes; 运行效果&#xff1a; 创建数据库后查看该数据库基本信息MySQL命令&#xff1a; show create database db_classes; 运行效果&#xff…

智慧旅游推动旅游服务智慧化转型:借助智能科技的力量,实现旅游资源的精准匹配和高效利用,为游客提供更加便捷、舒适的旅游环境

目录 一、引言 二、智慧旅游的定义与特点 &#xff08;一&#xff09;智慧旅游的定义 &#xff08;二&#xff09;智慧旅游的特点 三、智能科技在旅游服务中的应用 &#xff08;一&#xff09;大数据分析助力旅游决策 &#xff08;二&#xff09;人工智能实现个性化推荐…

硬件设计——滤波器设计_MIC用有源带通滤波器

“在已有的成熟稳定的滤波器基础上&#xff0c;根据业务需要对原设计进行优化调整以得到新的滤波器” 是滤波器设计的一种常用方法。 MIC用有源带通滤波器 介绍一种简单直观的带通滤波器以及计算过程&#xff0c;以作未来可参考的基线设计。该滤波器可用于音频信号&#xff0…

Layer1 公链竞争破局者:Sui 生态的全面创新之路

随着 Sui 生态逐渐在全球范围内树立起声望&#xff0c;并通过与 Revolut 等前沿金融科技平台合作&#xff0c;推广区块链教育与应用&#xff0c;Sui 生态的未来发展方向已成为业界瞩目的焦点。如今&#xff0c;Sui 的总锁定价值已攀升至 5.93 亿美元&#xff0c;充分展示了其在…

idea配置hive

idea配置hive 今天才知道&#xff0c;idea居然可以配置hive&#xff0c;步骤如下: view -> Tool Windows -> Database Database出来了之后&#xff0c;直接配置即可

react【实用教程】 搭建开发环境(2024版)Vite+React (官方推荐)

以项目名 reactDemo为例 1. 下载脚手架 在目标文件夹中打开命令行 npm create vite2. 安装项目依赖 cd reactDemo npm i若安装失败&#xff0c;则修改下载源重试 npm config set registry https://registry.npmmirror.com3. 启动项目 npm run dev4. 预览项目 浏览器访问 http…

特斯拉擎天柱机器人:工厂自动化的未来

随着技术的进步&#xff0c;工业自动化已经逐步进入了一个新的纪元。特斯拉最近公布的擎天柱机器人Optimus的演示&#xff0c;不仅仅展示了一个高科技机器人的能力&#xff0c;更是向我们揭示了未来工厂的可能性。 特斯拉擎天柱机器人的功能展示 马斯克在最新的演示中向我们展…

【自然语言处理】seq2seq模型——机器翻译

seq2seq模型——机器翻译 1 任务目标 1.1 案例简介 seq2seq是神经机器翻译的主流框架&#xff0c;如今的商用机器翻译系统大多都基于其构建&#xff0c;在本案例中&#xff0c;我们将使用由NIST提供的中英文本数据训练一个简单的中英翻译系统&#xff0c;在实践中学习seq2se…

深度解读《深度探索C++对象模型》之C++的临时对象(二)

目录 临时对象的生命期 特殊的情况 接下来我将持续更新“深度解读《深度探索C对象模型》”系列&#xff0c;敬请期待&#xff0c;欢迎左下角点击关注&#xff01;也可以关注公众号&#xff1a;iShare爱分享&#xff0c;或文章末尾扫描二维码&#xff0c;自动获得推文和全部的…

VTK数据的读写--Vtk学习记录1--《VTK图形图像开发进阶》

读和写操作是VTK可视化管线两端相关的类--Reader和Writer类 Reader:将外部数据读入可视化管线&#xff0c;主要步骤如下 s1:实例化Reader对象 s2:指定所要读取的文件名 s3:调用Update()促使管线执行 对应的Writer: s1:实例化Writer对象 s2输入要写的数据以及指定写入的文…

如何实现网页上3D模型的展示、浏览和互动?

实现网页上3D模型的展示、浏览和互动&#xff0c;可以通过以下步骤进行&#xff1a; 1、创建3D内容&#xff1a;使用3ds max、Maya、blender、C4D等3D软件制作好3D模型。 2、设计3D应用&#xff1a;把制作好的模型导出为fbx、obj、dae、gltf、glb等格式文件&#xff0c;上传到…

^_^填坑备忘^_^C#自动化编程实现STK+Exata对卫星互联网星座进行网络仿真

C#实际选择 STK11版本 or STK12版本的问题备注。 【C#自动化客户端调用STK时&#xff0c;实际选择 STK11版本 or STK12版本 的调试运行备注】 以下代码“更新并重新打包备份为”〔testSTKQualNetInterface备份08.1_★避坑★【种子卫星&#xff1a;天线直接安装在卫星上&#…

check startup检查各种资源文件

check startup 命令功能 check startup命令用来检查各种资源文件&#xff08;paf文件、补丁包、启动软件、配置文件&#xff09;是否正确。 命令格式 check startup [ crc ] [ next ] 参数说明 参数参数说明取值 crc 对资源文件进行CRC校验。 - next 检查下一次启动的各…

scitb5函数2.1版本(交互效应函数P for interaction)发布----用于一键生成交互效应表、森林图

写在前面的话&#xff0c;此函数不适用于NHANES数据&#xff0c;也不能用于COX回归,请注意甄别。 在SCI文章中&#xff0c;交互效应表格&#xff08;通常是表五&#xff09;几乎是高分SCI必有。因为增加了亚组人群分析&#xff0c;增加了文章的可信度&#xff0c;能为文章锦上添…

规培报名身份证上传怎么小于500k?这几个方法试试看

大家都知道在规培报名的时候&#xff0c;是需要上传一些自己的个人信息资料到平台上的&#xff0c;其中身份证照片是比较重要的一项&#xff0c;我们自己拍的身份证照片大小有时候可能不符合网站的规定&#xff0c;需要去做一些图片修改调整&#xff0c;比如图片你压缩&#xf…

OpenAI潜入黑客群聊!盗用ChatGPT被换成“喵喵GPT”,网友:绝对的传奇

当ChatGPT被**黑客“入侵”**时&#xff0c;OpenAI会如何应对&#xff1f; 掐断API&#xff0c;不让他们用&#xff1f;不不不。 这帮极客们采取的做法可谓是剑走偏锋——反手一记《无间道》。 故事是这样的。 OpenAI虽然在发布ChatGPT之前做了大量的安全性检测&#xff0c;…