重磅!Llama-3,最强开源大模型正式发布!

4月19日,全球科技、社交巨头Meta在官网,正式发布了开源大模型——Llama-3。

据悉,Llama-3共有80亿、700亿两种参数,分为基础预训练和指令微调两种模型(还有一个超4000亿参数正在训练中)。

与Llama-2相比,Llama-3使用了15T tokens的训练数据,在推理、数学、代码生成、指令跟踪等能力获得大幅度提升。

此外,Llama-3还使用了分组查询注意力、掩码等创新技术,帮助开发者以最低的能耗获取绝佳的性能。很快,Meta就会发布Llama-3的论文。

开源地址:huggingface.co/collections…

Github地址:github.com/meta-llama/…

英伟达在线体验Llama-3:www.nvidia.com/en-us/ai/#r…

图片

但首发的Llama-3虽然在性能上获得大幅度提升,功能上却没有带来太多的惊喜,例如,将类Sora的视频,或者Suno那样的音频功能内置在模型中,通过文本直接生成。

其实,Meta已经发布了很多音频、视频还有图像的产品和研究论文,想整合它们估计只是时间问题。我们就期待一下Llama-3可以在未来几个月,带来更多的亮眼功能吧。

Llama-3简单介绍

本次Llama-3的介绍与前两个版本差不多,大量的测试数据和格式化介绍。但Meta特意提到Llama-3使用了掩码和分组查询注意力这两项技术。

目前,大模型领域最流行的Transformer架构的核心功能是自我注意力机制,这是一种用于处理序列数据的技术,可对输入序列中的每个元素进行加权聚合,以捕获元素之间的重要关系。

Llama-3介绍

但在使用自我注意力机制时,为了确保模型不会跨越文档边界,通常会与掩码技术一起使用。在自我注意力中,掩码被应用于注意力权重矩阵,用于指示哪些位置的信息是有效的,哪些位置应该被忽略。

**通常当处理文档边界时,可以使用两种类型的掩码来确保自我注意力不会跨越边界:**1)填充掩码,当输入序列的长度不一致时,通常会对较短的序列进行填充,使其与最长序列的长度相等。

填充掩码用于标记填充的位置,将填充的部分掩盖,使模型在自我注意力计算中忽略这些位置。

2)未来掩码,在序列生成任务中,为了避免模型在生成当前位置的输出时依赖后续位置的信息,可以使用未来掩码。

未来掩码将当前位置之后的位置都掩盖起来,使得自我注意力只能关注当前或之前的位置。

此外,在Transformer自注意力机制中,每个查询都会计算与所有键的相似度并进行加权聚合。

而在分组查询注意力中,将查询和键分组,并将注意力计算限制在每个查询与其对应组的键之间,从而减少了模型计算的复杂度。

图片

由于减少了计算复杂度,分组查询注意力使得大模型更容易扩展到处理更长的序列或更大的批次大小。这对于处理大规模文本数据或需要高效计算的实时应用非常有益。

同时分组查询注意力允许在每个查询和其对应组的键之间进行关注的计算,从而控制了注意力的范围。这有助于模型更准确地捕捉查询和键之间的依赖关系,提高了表示能力。

Meta表示,Llama-3 还使用了一个 128K的词汇表标记器,能更有效地编码语言,在处理语言时也更加灵活。

训练数据方面,lama 3 在超过 15T tokens的公开数据集上进行了预训练。这个训练数据集是 Llama 2 的7倍,包含的代码数量也是 Llama 2 的4倍。

为了实现多语言能力,Llama 3 的预训练数据集中有超过 5% 的高质量非英语数据,涵盖 30 多种语言。

Llama-3测试数据

为了测试Llama-3的性能,Meta开发了一个全新的高质量人类评估数据集,有1,800个提示,涵盖12个关键用例,包含,征求建议,头脑风暴,分类,封闭式问题回答,编码,推理等。

测试结果显示,Llama-3 -700亿参数的指令微调模型的性能,大幅度超过了Claude Sonnet、Mistral Medium和GPT-3.5。

图片

Meta还在MMLU、AGIEval、BIG、ARC等知名测试平台中,对Llama-3 -700亿参数基础预训练模型进行了综合测试,性能大幅度超过了Mistral 7B、Gemma 7B、Gemini Pro 1.0等知名开源模型。

图片

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2981465.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

如何阻止cPanel与WHM自动重定向到服务器主机名

本周有一个客户,购买Hostease的VPS主机,询问我们的在线客服,如何阻止cPanel / WHM自动重定向到服务器主机名。我们为用户提供教程,用户很快完成了设置。在此,我们分享这个操作教程,希望可以对您有帮助。 接…

Python自学篇2-导入Win32库

Python导入win32模块 导入win32模块可以让我们在Python中使用Windows的API功能,这对于开发需要与Windows操作系统进行交互的应用程序非常有用。 本文将介绍如何导入win32模块,并提供一些代码示例来帮助读者更好地理解。 什么是win32模块? …

吴恩达机器学习笔记:第 8 周-13 聚类(Clustering)13.3-13.5

目录 第 8 周 13、 聚类(Clustering)13.3 优化目标13.4 随机初始化13.5 选择聚类数 第 8 周 13、 聚类(Clustering) 13.3 优化目标 K-均值最小化问题,是要最小化所有的数据点与其所关联的聚类中心点之间的距离之和,因此 K-均值的代价函数(又…

【1646】医院人员管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 java 医院人员管理系统是一套完善的java web信息管理系统,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为TOMCAT7.0,Myeclipse8.5开发,数据库为Mysql5.0&…

【vue2】实现微信截图(复制图片)在项目内可粘贴

需求 后台管理在上传图片地方需要将复制的图片粘贴上传 一、添加事件 在原有上传组件的基础上添加 paste事件 二、方法 onPaste(e) {const items (e.clipboardData || window.clipboardData).items;let blob null;for (let i 0; i < items.length; i) {if (items[i].ty…

PS入门|用PS设计物品尺寸,需要注意的几个重要问题

注&#xff1a;仅学习使用 【PS24】2024版本更新的内容比较多&#xff0c;对电脑配置的要求也是比较高的。建议配置&#xff1a;第十代i5或以上CPU。 如果是第十代i3或以下的CPU&#xff0c;建议安装PS2021或者以下版本。 ---这是一条不正经的分割线--- 讲了那么久的PS教程…

Matlab 对nc文件进行处理

1.介绍nc文件 NetCDF全称为network Common Data Format&#xff0c;中文译法为“网络通用数据格式”&#xff1b;netcdf文件开始的目的是用于存储气象科学中的数据&#xff0c;现在已经成为许多数据采集软件的生成文件的格式。 •从数学上来说&#xff0c;netcdf存储的数据就是…

springboot停机关闭前保证处理完请求

application.yml配置 server:shutdown: graceful // 处理完请求在关闭服务server:shutdown: immediate // 立刻关闭&#xff0c;默认 jvm关闭自带的回调

fakak详解(2)

Kafka和Flume整合 Kafka与flume整合流程 Kafka整合flume流程图 flume主要是做日志数据(离线或实时)地采集。 图-21 数据处理 图-21显示的是flume采集完毕数据之后&#xff0c;进行的离线处理和实时处理两条业务线&#xff0c;现在再来学习flume和kafka的整合处理。 配置fl…

Python基础学习之去除换行符

strip() 方法 strip() 方法用于去除字符串开头和结尾的空白字符&#xff0c;包括换行符&#xff08;\n&#xff09;、制表符&#xff08;\t&#xff09;和空格等。如果您想从字符串数据中去掉换行符&#xff0c;无论是单独存在的还是与其他空白字符一起&#xff0c;strip() 方…

【LAMMPS学习】八、基础知识(4.3)TIP3P水模型

8. 基础知识 此部分描述了如何使用 LAMMPS 为用户和开发人员执行各种任务。术语表页面还列出了 MD 术语&#xff0c;以及相应 LAMMPS 手册页的链接。 LAMMPS 源代码分发的 examples 目录中包含的示例输入脚本以及示例脚本页面上突出显示的示例输入脚本还展示了如何设置和运行各…

李沐57_长短期记忆网络LSTM——自学笔记

LSTM 1.忘记门&#xff1a;将值朝着0减少 2.输入门&#xff1a;决定不是忽略掉输入数据 3.输出门&#xff1a;决定是不是使用隐状态 !pip install --upgrade d2l0.17.5 #d2l需要更新首先加载时光机器数据集。 import torch from torch import nn from d2l import torch a…

「React Native」为什么要选择 React Native 作为的跨端方案

文章目录 前言一、常见因素二、举个栗子2.1 项目背景2.2 为什么选择 React Native2.3 项目实施2.4 成果总结 前言 没有完美的跨端技术&#xff0c;只有适合的场景。脱离适用场景去谈跨端技术没有什么意义。 一、常见因素 共享代码库&#xff1a; React Native 允许开发者编写…

LeetCode78:子集

题目描述 给你一个整数数组 nums &#xff0c;数组中的元素 互不相同 。返回该数组所有可能的 子集 &#xff08;幂集&#xff09;。 解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。 代码 class Solution { public:vector<vector<int>> res;vector<…

团队如何异地共享文件?

在当今全球化的办公环境中&#xff0c;团队成员往往分散在不同的地理位置上。为了更好地协同工作&#xff0c;团队之间需要快速、安全地共享文件。本文将介绍一种名为“团队异地共享文件”的解决方案&#xff0c;它能够帮助团队成员在不同地点方便地共享文件&#xff0c;提高工…

代码随想录第四天打卡笔记

链表part2 1&#xff09;两两交换链表中的节点 这道题按照三步走方式&#xff1a; &#xff08;1&#xff09;第一步&#xff0c;设置cur指针指向这两个元素的第一个&#xff08;这里一定要注意保存原结点&#xff01;&#xff09;&#xff0c;断开cur与第一个节点的链接&…

echarts实现云台控制按钮效果,方向按钮

效果图 代码 option {color: [#bfbfbf],tooltip: {show: false},series: [{name: ,type: pie,radius: [40%, 70%],avoidLabelOverlap: true,itemStyle: {// borderRadius: 10,borderColor: #fff,borderWidth: 2},label: {show: true,position: inside,fontSize: 36,color: #f…

CISAW应急服务:网络安全应急响应之路——从经验到认证的体会

随着信息技术的飞速发展&#xff0c;网络安全问题日益凸显。作为一名网络安全从业人员&#xff0c;我深知每一次安全事件给组织甚至国家带来的巨大损失和潜在影响。在多年的实际工作中&#xff0c;我积累了一些网络安全应急服务经验&#xff0c;并参加了信息安全保障人员认证&a…

火绒安全的应用介绍

火绒安全软件是一款集成了杀毒、防御和管控功能的安全软件&#xff0c;旨在为用户提供全面的计算机安全保障。以下是火绒安全软件的一些详细介绍&#xff1a; 系统兼容性强&#xff1a;该软件支持多种操作系统&#xff0c;包括Windows 11、Windows 10、Windows 8、Windows 7、…

深度学习| Attention U-Net(包含Attention Gate代码)

前言&#xff1a;最近在阅读一篇文章&#xff0c;用到了Attention Unet所以特地写了两篇文章&#xff0c;上一篇文章介绍了Attention的基础知识&#xff0c;这篇文化在哪个介绍Attention Unet相关知识以及代码。 Attention U-Net 基础注意力机制软注意力和硬注意力U-Net为什么…