分类预测 | Matlab实现CNN-GRU-SAM-Attention卷积门控循环单元融合空间注意力机制的数据分类预测

分类预测 | Matlab实现CNN-GRU-SAM-Attention卷积门控循环单元融合空间注意力机制的数据分类预测

目录

    • 分类预测 | Matlab实现CNN-GRU-SAM-Attention卷积门控循环单元融合空间注意力机制的数据分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现CNN-GRU-SAM-Attention卷积门控循环单元融合空间注意力机制的数据分类预测(完整源码和数据)
2.自带数据,多输入,单输出,多分类。图很多,包括多边形面积PAM、分类准确率、灵敏度、特异性、曲线下面积AUC、Kappa系数、F_measure。等等。
3.直接替换数据即可使用,保证程序可正常运行。运行环境MATLAB2021及以上。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整程序和数据资源处下载:Matlab实现CNN-GRU-SAM-Attention卷积门控循环单元融合空间注意力机制的数据分类预测。
%% 建立模型
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层flattenLayer("Name", "flatten")                                  % 网络铺平层fullyConnectedLayer(num_class, "Name", "fc")                     % 全连接层softmaxLayer("Name", "softmax")                                  % softmax激活层classificationLayer("Name", "classification")];                  % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in");            % 激活层输出 连接 反折叠层输入%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法'MaxEpochs', 500,...                 % 最大训练次数 'InitialLearnRate', best_lr,...          % 初始学习率为0.001'L2Regularization', best_l2,...         % L2正则化参数'LearnRateSchedule', 'piecewise',...  % 学习率下降'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',...          % 每次训练打乱数据集'ValidationPatience', Inf,...         % 关闭验证'Plots', 'training-progress',...      % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2980600.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

生成式AI原理技术详解(一)——神经网络与深度学习

本文主要介绍了生成式AI的最新发展,提到了GPT-5和AI软件工程师在行业中的影响,指出AI技术进步对国家竞争和个人职业发展的潜在影响。 未来已来 最近有两则新闻: sam altman自曝GPT-5细节,公开宣称GPT-5提升将非常大,任…

第48期|GPTSecurity周报

GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找…

FPGA“题目周周练”活动来啦!

Hi,各位编程精英er~ 不知道大家的FPGA学习之旅到达哪一个阶段了呢?又在这个过程中遇到了哪些困惑? 作为一门高度专业化且充满挑战的技术,FPGA的学习是一场不断思考、认知、持续深化的过程。在这个过程中,思维的敏捷和…

IDEA上配置Maven环境

1.选择IDEA中的Setting 2.搜索maven 3.设置IDEA使用本地安装的Maven,并修改配置文件路径 配置文件,本地仓库,阿里云仓库配置及路径教程 在IDEA上配置完成。

“三三裂变”,实体书营销实操细节分享……

“三三裂变”实操细节 一、实验结果 “三三裂变”的实验,结果比较好。就是我们大概有300人报名,但实际行动的只有109人,大概有103人都完成了三个人的目标,也就是说我们通过109人裂变了475人,利润率是1:4.5左右,整个裂变的效率还是可以的,也就是说: 如果你用这种方法有…

电力调度自动化中智能电网技术的应用

电力调度自动化中智能电网技术的应用 在现代电网的现代化发展和电网重组工作中起着关键作用,由于此项技术开发时间短,目前还没有形成一个相对清晰的概念,但此技术在未来的电网发展工作中的地位已得到了一些国家的认可。由于智能电网具有良好的兼容性以及交互性等优势,一经推出就…

iOS - 多线程的安全隐患

文章目录 iOS - 多线程的安全隐患1. 卖票案例2. 多线程安全隐患的解决方案2.1 iOS中的线程同步方案2.2 同步方案的使用2.2.1 OSSpinLock2.2.1.1 使用方法:2.2.1.2 案例 2.2.2 os_unfair_lock2.2.2.1 使用方法:2.2.2.2 案例 2.2.3 pthread_mutex2.2.3.1 使…

安捷伦Agilent N5230A 300KHZ至20G矢量网络分析仪

安捷伦Agilent N5230A 300KHZ至20G矢量网络分析仪 N5230A主要参数 2端口300KHz—6、13.5GHz 2端口300KHz—20、40、50GHz 4端口300KHz—20GHz,具有混模S参数和高级夹具校正功能 测量S参数和增益压缩的频率和功率扫描 基本混频器/转换器测量 低至2μs脉冲宽度…

uniapp项目中禁止横屏 ,app不要自动旋转 -,保持竖屏,uniapp取消重力感应

uniapp项目中禁止横屏 ,app不要自动旋转 -,保持竖屏,uniapp取消重力感应 1.适用于移动端,安卓和IOS,当即使手机打开了自动旋转的按钮,设置如下的代码后,页面依旧保持竖屏。 步骤一&#xff1a…

pnpm 安装后 node_modules 是什么结构?为什么 webpack 不识别 pnpm 安装的包?

本篇研究:使用 pnpm 安装依赖时,node_modules 下是什么结构 回顾 npm3 之前:依赖树 缺点: frequently packages were creating too deep dependency trees, which caused long directory paths issue on Windowspackages were c…

贪心算法-活动安排问题和背包问题

实验6贪心算法-活动安排问题和背包问题 实验目的: 理解贪心算法的基本思想运用贪心算法解决实际问题 实验内容: 采用贪心方法编程实现以下问题的算法 1.如何安排下列活动使得使用的活动场所最少,并给出具体的安排方法。 活动 a b c …

【iOS】类与对象底层探索

文章目录 前言一、编译源码二、探索对象本质三、objc_setProperty 源码探索四、类 & 类结构分析isa指针是什么类的分析元类元类的说明 五、著名的isa走位 & 继承关系图六、objc_class & objc_objectobjc_class结构superClassbitsclass_rw_tclass_ro_tro与rw的区别c…

牛客社区帖子分页显示实现

下图是前端分页的组件: 下面是对应的静态html页面,每一个方块,都是一个a标签,可以点击,执行的链接是/community/index,GET请求,拼接的参数是current,也就是pageNum,只需…

Swing用法的简单展示

1.简单的登陆界面示例 import javax.swing.*; import java.awt.event.ActionEvent; import java.awt.event.ActionListener;public class Main extends JFrame {private JTextField usernameField;private JPasswordField passwordField;public Main() {setTitle("登陆界…

符尧:LLama3开启Scale游戏的第二章

符尧 | 网站 | 博客 | 推特 / X 爱丁堡大学 | yao.fued.ac.uk 发布日期:2024年4月22日 原贴:https://yaofu.notion.site/Apr-2024-Llama-3-Opens-the-Second-Chapter-of-the-Game-of-Scale-efff1c0c185f4008af673b78faf83b61 翻译和评论由“强化学徒”…

【派兹互连·SailWind】美国瞄准“小华为”

有“小华为”之称的海能达遭遇了来自美国方面的压力。 近日,海能达紧急发公告称,公司收到美国法院的判令,临时被禁止在全球范围内销售双向无线电技术的产品,并处以每天100万美元的罚款,直至公司完全遵守禁诉令之时止。…

基于机器学习的无人机避障技术详解,无人机避障技术应用前景

随着无人机技术的快速发展,无人机避障技术成为了研究的热点。基于机器学习的无人机避障技术,主要利用机器学习算法处理传感器数据,实现无人机的自主避障。这种技术可以显著提高无人机的飞行安全性和智能化水平。 机器学习基础 机器学习是人工…

【网络安全】在网络中如何对报文和发送实体进行鉴别?

目录 1、报文鉴别 (1)使用数字签名进行鉴别 (2)密码散列函数 (3)报文鉴别码 2、实体鉴别 鉴别(authentication) 是网络安全中一个很重要的问题。 一是要鉴别发信者,即验证通信的对方的确是…

MT8788智能模块简介_MTK联发科安卓核心板方案厂商

MT8788安卓核心板是一款具备超高性能和低功耗的4G全网通安卓智能模块。该模块采用联发科AIOT芯片平台,供货周期长。 MT8788核心板搭载了12nm制程的四个Cortex-A73处理器核心和四个Cortex-A53处理器核心,最高主频可达2.0GHz。板载内存容量可选为4GB64GB(也…

工业相机和镜头参数和选型

工业相机和镜头参数和选型 文章目录 工业相机和镜头参数和选型前言一、相机参数解释和选型1.相机参数1.1快门-shutter1.2曝光-exposure1.3增益-gain1.4 感光芯片类型(CCD/CMOS)1.5 感光芯片(靶面)尺寸1.6 分辨率1.7 像元尺寸1.8 帧…