神经网络系列---卷积


文章目录

    • 卷积神经网络
      • 卷积
      • 转置卷积
    • 卷积核和反卷积的三种实现方式
    • 卷积的次数计算


卷积神经网络

在神经网络的卷积层中,向下取整(Floor)是一种常用的策略,特别是在处理输出尺寸不是整数的情况时。当你计算出卷积层输出的尺寸(通常是宽度和高度)不是整数时,你可以简单地去掉小数部分,即对该数进行向下取整。

向下取整通常意味着在卷积操作中你可能会忽略输入矩阵(也就是图像或者上一层的输出)的一小部分。这可能导致一些空间信息的丢失,但在实践中通常不会产生重大影响。

举一个简单的例子,假设你有一个7x7的输入和一个3x3的卷积核,步长为2。通常,输出的尺寸会用以下公式来计算:

输出尺寸 = ⌊ 输入尺寸 − 核尺寸 步长 ⌋ + 1 \text{输出尺寸} = \left\lfloor \frac{{\text{输入尺寸} - \text{核尺寸}}}{\text{步长}} \right\rfloor + 1 输出尺寸=步长输入尺寸核尺寸+1

如果用这个公式计算,输出尺寸会是:

⌊ 7 − 3 2 ⌋ + 1 = 3 \left\lfloor \frac{{7 - 3}}{2} \right\rfloor + 1 = 3 273+1=3

这里,向下取整实际上没有影响,因为计算结果刚好是一个整数。但如果输入尺寸是8x8,那么输出尺寸会是:

⌊ 8 − 3 2 ⌋ + 1 = ⌊ 5 2 ⌋ + 1 = 2 + 1 = 3 \left\lfloor \frac{{8 - 3}}{2} \right\rfloor + 1 = \left\lfloor \frac{5}{2} \right\rfloor + 1 = 2 + 1 = 3 283+1=25+1=2+1=3

在这个例子中,尽管精确的计算结果是3.5,但通过向下取整,输出尺寸变成了3。

使用向下取整的一个优点是它简化了实现,因为你不需要特别处理边界条件。缺点是可能会丢失一些空间信息,尤其是当步长比较大的时候。然而,在许多应用场景中,这种信息丢失通常是可以接受的。

神经网络中关于卷积池化的计算(不为整数时,卷积向下取整,池化向上取整)

在这里插入图片描述

在这里插入图片描述

对于正向传播,我们使用原始的卷积核进行卷积操作。在反向传播时,为了计算输入或权重的梯度,通常需要进行“翻转”操作。

需要注意的是,正向卷积和反向传播中的卷积(通常称为转置卷积或反卷积)在数学和实现上有一些不同。在正向传播中,卷积核与输入数据进行卷积以生成输出。而在反向传播中,我们关心的是如何改变输入或卷积核以最小化某个损失函数。

为了具体说明为什么需要翻转卷积核,考虑一维情况(二维情况是类似的):

假设正向卷积表示为 y = x ∗ w y = x * w y=xw,其中 x x x 是输入, w w w 是卷积核, y y y 是输出,‘*’ 是卷积操作。

在反向传播过程中,我们通常需要计算损失函数 L L L 关于输入 x x x 的梯度( ∂ L ∂ x \frac{\partial L}{\partial x} xL)。为了找到这个梯度,我们需要用到链式法则:

∂ L ∂ x = ∂ L ∂ y ∗ rot180 ( w ) \frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} * \text{rot180}(w) xL=yLrot180(w)

其中, rot180 ( w ) \text{rot180}(w) rot180(w) 表示将 w w w 进行180度翻转。

这样做的主要原因是数学上的一致性和计算的方便性。这样,前向和反向传播可以用相似的卷积操作来实现,大大简化了算法的实现。

简而言之,在正向传播中我们使用原始的卷积核,而在反向传播时,为了计算梯度,我们通常需要用到翻转的卷积核。这主要是为了数学和计算的方便。

在反向传播(backpropagation)过程中,通常会使用原始卷积核(kernel)的翻转版本。这里的“翻转”通常意味着沿两个空间维度(即不是批量维度或通道维度)旋转180度。

例如,如果你有一个3x3的卷积核:

K = ( a b c d e f g h i ) K = \begin{pmatrix}a & b & c \\d & e & f \\g & h & i\end{pmatrix} K= adgbehcfi

翻转这个卷积核会得到:

K rot = ( i h g f e d c b a ) K^{\text{rot}} = \begin{pmatrix}i & h & g\\f & e & d \\c & b & a\end{pmatrix} Krot= ifchebgda

在Eigen中,使用reverse()函数并指定需要翻转的维度可以实现这一点。例如,对于一个Eigen::MatrixXf对象kernel,你可以这样翻转它:

Eigen::MatrixXf rotated_kernel = kernel.reverse();

这里简单假设reverse()默认沿两个维度翻转矩阵。实际使用中,请确保你正确地翻转了维度。

这个翻转的卷积核(或旋转180度的卷积核)通常用于反向传播过程中,以计算相对于输入的梯度。这与前向传播中使用的卷积核是同一个卷积核,只是翻转了。

【卷积神经网络中的反向传播动画演示】
在这里插入图片描述

通过将输入和卷积核展开(unroll)为矩阵,可以使用矩阵乘法来实现卷积和转置卷积操作。下面简要介绍如何使用这种技术。

卷积

假设我们有一个输入矩阵 X X X 和一个卷积核 K K K。我们首先将 X X X 展开为一个大矩阵 X unroll X_{\text{unroll}} Xunroll,其中每一列都包含一个 K K K 能应用于 X X X 的局部区域。然后,我们将 K K K 展开为一个行向量 K unroll K_{\text{unroll}} Kunroll

接下来,卷积操作可以通过以下矩阵乘法进行:

O = K unroll × X unroll O = K_{\text{unroll}} \times X_{\text{unroll}} O=Kunroll×Xunroll

其中 O O O 是输出矩阵。

转置卷积

对于转置卷积,方法基本相同,但展开和乘法的方向会有所不同。

假设我们有一个输入矩阵 Y Y Y 和相同的卷积核 K K K。为了进行转置卷积,我们将 Y Y Y 展开为 Y unroll Y_{\text{unroll}} Yunroll,然后执行以下矩阵乘法:

O = X unroll × K T O = X_{\text{unroll}} \times K^T O=Xunroll×KT

这里, K T K^T KT K K K 的转置。

请注意,在这两种情况下,我们都需要格外注意矩阵的维度和展开的顺序。

卷积核和反卷积的三种实现方式

#include <Eigen/Dense>
#include <iostream>//卷积
Eigen::MatrixXf conv2D(const Eigen::MatrixXf& input, const Eigen::MatrixXf& kernel, int stride) {// 计算输出矩阵的尺寸int rows = (input.rows() - kernel.rows()) / stride + 1;int cols = (input.cols() - kernel.cols()) / stride + 1;// 创建输出矩阵Eigen::MatrixXf output(rows, cols);for (int i = 0; i < rows; ++i) {for (int j = 0; j < cols; ++j) {// 计算每个输出元素Eigen::MatrixXf block = input.block(i * stride, j * stride, kernel.rows(), kernel.cols());output(i, j) = (block.array() * kernel.array()).sum();}}return output;
}// deconv2D 是一个函数,用于执行反卷积(也叫转置卷积)
Eigen::MatrixXf deconv2D( const Eigen::MatrixXf& y_grad,const Eigen::MatrixXf& kernel, int stride) {// 计算输出尺寸int outputRows = (y_grad.rows() - 1) * stride + kernel.rows();int outputCols = (y_grad.cols() - 1) * stride + kernel.cols();// 初始化输出矩阵为零Eigen::MatrixXf output = Eigen::MatrixXf::Zero(outputRows, outputCols);// 进行转置卷积操作for (int i = 0; i < y_grad.rows(); ++i) {for (int j = 0; j < y_grad.cols(); ++j) {// 注意:这里我们假设步长(stride)是1,你可以通过修改下面的索引来调整步长output.block(i * stride, j * stride, kernel.rows(), kernel.cols()) += y_grad(i, j) * kernel;}}return output;
}// 转置卷积
Eigen::MatrixXf Conv2DTransposed( int rows,int cols ,const Eigen::MatrixXf& kernel, int stride)
{int r = (rows - kernel.rows()) / stride + 1;int c = (cols - kernel.cols()) / stride + 1;// 初始化输出矩阵为零Eigen::MatrixXf output1 = Eigen::MatrixXf::Zero(r * c, rows * cols);int jj =0;// 进行转置卷积操作for (int i = 0; i < r; ++i){for (int j = 0; j < c ; ++j){// 初始化输出矩阵为零Eigen::MatrixXf output = Eigen::MatrixXf::Zero(rows, cols);// 注意:这里我们假设步长(stride)是1,你可以通过修改下面的索引来调整步长output.block(i * stride, j * stride, kernel.rows(), kernel.cols()) = kernel;output1.row(jj++) = output.reshaped<Eigen::RowMajor>();}}return output1;
}
//图像转换为列
Eigen::MatrixXf im2col(const Eigen::MatrixXf& input, int kernel_rows, int kernel_cols, int stride) {int output_rows = (input.rows() - kernel_rows) / stride + 1;int output_cols = (input.cols() - kernel_cols) / stride + 1;Eigen::MatrixXf output(kernel_rows * kernel_cols, output_rows * output_cols);int col_idx = 0;for (int row = 0; row <= input.rows() - kernel_rows; row += stride){for (int col = 0; col <= input.cols() - kernel_cols; col += stride){Eigen::VectorXf col_vector = input.block(row, col, kernel_rows, kernel_cols).reshaped<Eigen::RowMajor>();//const Eigen::VectorXf col_vector = Eigen::Map<const Eigen::VectorXf, Eigen::RowMajor>(block.data(), block.size());output.col(col_idx++) = col_vector;}}return output;
}//列转换为图像
Eigen::MatrixXf col2im(const Eigen::MatrixXf& input, int original_rows, int original_cols, int kernel_rows, int kernel_cols, int stride) {Eigen::MatrixXf output = Eigen::MatrixXf::Zero(original_rows, original_cols);int col_idx = 0;for (int row = 0; row <= original_rows - kernel_rows; row += stride){for (int col = 0; col <= original_cols - kernel_cols; col += stride){Eigen::MatrixXf block = input.col(col_idx++).reshaped<Eigen::RowMajor>(kernel_rows, kernel_cols);//const Eigen::MatrixXf block = Eigen::Map<const Eigen::MatrixXf, Eigen::RowMajor>(col_vector.data(), kernel_rows, kernel_cols);output.block(row, col, kernel_rows, kernel_cols) += block;}}return output;
}int main() {// 用于测试的输入和卷积核Eigen::MatrixXf input(5, 5);input << 1, 2, 3, 4, 5,5, 4, 3, 2, 1,1, 2, 3, 4, 5,5, 4, 3, 2, 1,1, 2, 3, 4, 5;Eigen::MatrixXf kernel(3, 3);kernel << 1, 0, -1,1, 5, -1,1, 4, -1;int stride = 2;//第一种实现:正常卷积{//卷积Eigen::MatrixXf output = conv2D(input, kernel, stride);std::cout << "1: Conv2D Output:\n" << output << std::endl;//反卷积Eigen::MatrixXf output1 = deconv2D(output,kernel, stride);std::cout << "1: deconv2D output1:\n" << output1 << std::endl;}//第二种实现:转置卷积{Eigen::MatrixXf Unfold = Conv2DTransposed(input.rows(),input.cols(),kernel,stride);std::cout << "2: Unfold:\n" << Unfold << std::endl;Eigen::VectorXf Input = input.reshaped<Eigen::RowMajor>();Eigen::MatrixXf output = Unfold * Input;std::cout << "2: Conv2D Output:\n" << output << std::endl;Eigen::MatrixXf output1 =  (Unfold.transpose() * output).reshaped<Eigen::RowMajor>(input.rows(),input.cols());std::cout << "2: deconv2D output1:\n" << output1 << std::endl;}//第三种种实现:图像转换为列  矩阵相乘实现  加速运算{Eigen::MatrixXf input_unroll = im2col(input, kernel.rows(),kernel.cols(), stride);Eigen::RowVectorXf kernel_unroll = kernel.reshaped<Eigen::RowMajor>();Eigen::MatrixXf output = kernel_unroll * input_unroll ;std::cout << "3: Conv2D Output:\n" << output << std::endl;Eigen::MatrixXf output_unroll11 = kernel_unroll.transpose() * output;std::cout << "3: output_unroll11:\n" << output_unroll11 << std::endl;Eigen::MatrixXf output1 = col2im(output_unroll11, input.rows(),input.cols(),kernel.rows(),kernel.cols(), stride);std::cout << "3: deconv2D output1:\n" << output1 << std::endl;}}
1: Conv2D Output:
26 24
26 24
1: deconv2D output1:26   0  -2   0 -2426 130  -2 120 -2452 104  -4  96 -4826 130  -2 120 -2426 104  -2  96 -24
2: Unfold:1  0 -1  0  0  1  5 -1  0  0  1  4 -1  0  0  0  0  0  0  0  0  0  0  0  00  0  1  0 -1  0  0  1  5 -1  0  0  1  4 -1  0  0  0  0  0  0  0  0  0  00  0  0  0  0  0  0  0  0  0  1  0 -1  0  0  1  5 -1  0  0  1  4 -1  0  00  0  0  0  0  0  0  0  0  0  0  0  1  0 -1  0  0  1  5 -1  0  0  1  4 -1
2: Conv2D Output:
26
24
26
24
2: deconv2D output1:26   0  -2   0 -2426 130  -2 120 -2452 104  -4  96 -4826 130  -2 120 -2426 104  -2  96 -24
3: Conv2D Output:
26 24 26 24
3: output_unroll11:26  24  26  240   0   0   0
-26 -24 -26 -2426  24  26  24
130 120 130 120
-26 -24 -26 -2426  24  26  24
104  96 104  96
-26 -24 -26 -24
3: deconv2D output1:26   0  -2   0 -2426 130  -2 120 -2452 104  -4  96 -4826 130  -2 120 -2426 104  -2  96 -24

卷积的次数计算

在这里插入图片描述

当然可以。给定一个输入特征图的大小和一个滤波器的大小,以及卷积的步长和填充,以下是如何计算卷积后的输出特征图的维度的完整公式:

  1. 高度 H 2 H_2 H2 的计算:
    H 2 = H 1 − F H + 2 P S + 1 H_2 = \frac{H_1 - F_{H} + 2P}{S} + 1 H2=SH1FH+2P+1

  2. 宽度 W 2 W_2 W2 的计算:
    W 2 = W 1 − F W + 2 P S + 1 W_2 = \frac{W_1 - F_{W} + 2P}{S} + 1 W2=SW1FW+2P+1

其中:

  • H 1 , W 1 H_1, W_1 H1,W1 是输入特征图的高和宽。
  • F H , F W F_H, F_W FH,FW 是滤波器的高和宽。
  • P P P 是填充的数量。
  • S S S 是步长。

以下是使用C++和Eigen库实现的示例:

#include <Eigen/Dense>
#include <iostream>
#include <cmath>std::pair<int, int> computeConvTimes(int input_rows, int input_cols, int kernel_rows, int kernel_cols, int stride) {int rows_times = (input_rows - kernel_rows) / stride + 1;int cols_times = (input_cols - kernel_cols) / stride + 1;return {rows_times, cols_times};
}int main() {int input_rows = 5, input_cols = 5;int kernel_rows = 3, kernel_cols = 3;int stride = 2;auto [rows_times, cols_times] = computeConvTimes(input_rows, input_cols, kernel_rows, kernel_cols, stride);std::cout << "Rows can be convolved: " << rows_times << " times.\n";std::cout << "Columns can be convolved: " << cols_times << " times.\n";return 0;
}

这段代码首先定义了一个函数computeConvTimes,该函数使用上述公式计算行和列的卷积次数。然后在main函数中展示了对于给定的输入大小、核大小和步长,可以进行多少次卷积操作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2822018.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Tomcat概念、安装及相关文件介绍

目录 一、web技术 1、C/S架构与B/S架构 1.1 http协议与C/S架构 1.2 http协议与B/S架构 2、前端三大核心技术 2.1 HTML&#xff08;Hypertext Markup Language&#xff09; 2.2 css&#xff08;Cascading Style Sheets&#xff09; 2.3 JavaScript 3、同步和异步 4、…

KakaoTalk数据库和加密文件密钥生成方法

KakaoTalk数据库密钥 KakaoTalk的数据库为sqlite3数据库&#xff0c;经过加密处理&#xff0c;不同类别的数据库采用不同的密钥加密。聊天记录的数据库由一个称为PRAGMA KEY的密钥进行加密&#xff0c;这里简称为PK。 PK的生成 PK的格式如下: ODSnnkkwyAHsXwgCEIQLCpAxdSZh…

【数学建模获奖经验】2023第八届数维杯数学建模:华中科技大学本科组创新奖获奖分享

2024年第九届数维杯大学生数学建模挑战赛将于&#xff1a;2024年5月10日08:00-5月13日09:00举行&#xff0c;近期同学们都开始陆续进入了备赛阶段&#xff0c;今天我们就一起来看看上一届优秀的创新奖选手都有什么获奖感言吧~希望能帮到更多热爱数学建模的同学。据说点赞的大佬…

20240301-2-ZooKeeper面试题(二)

11. Chroot 特性 3.2.0 版本后&#xff0c;添加了 Chroot 特性&#xff0c;该特性允许每个客户端为自己设置一个命名空间。如果一个客户端设置了 Chroot&#xff0c;那么该客户端对服务器的任何操作&#xff0c;都将会被限制在其自己的命名空间下。 通过设置 Chroot&#xff…

羊大师分享,羊奶奶有哪些对健康有益的喝法?

羊大师分享&#xff0c;羊奶奶有哪些对健康有益的喝法&#xff1f; 羊奶奶有多种对健康有益的喝法&#xff0c;以下是一些建议&#xff1a; 直接饮用&#xff1a;将羊奶直接煮沸后饮用&#xff0c;可以保留羊奶中的营养成分&#xff0c;为身体提供全面的滋养。羊奶的丰富蛋白质…

Spring11、整合Mybatis

11、整合Mybatis 步骤&#xff1a; 导入相关jar包 junit <dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.12</version> </dependency> mybatis <dependency><groupId>org.my…

【MySQL】redo log和undo log

引入 在介绍redo log和undo log之前&#xff0c;我们需要了解 MySQL 中的两个概念&#xff1a;缓冲池和数据页。 缓冲池(buffer pool)&#xff1a;主内存中的一个区域&#xff0c;里面可以缓存磁盘上经常操作的真实数据&#xff0c;在执行 CRUD 操作时&#xff0c;先操作缓冲…

Java 封装阿里云 oss 上传图片时抽取配置到 application 使用 @Value 获取值

Java 封装阿里云 oss 上传图片时抽取配置到 application 使用 Value 获取值 application .yml 配置 alioss: # 阿里云配置endpoint: "https://oss-cn-beijing.aliyuncs.com" # Endpoint以华东1&#xff08;杭州&#xff09;为例&#xff0c;其它Region请按实际…

任务系统之API子任务

日常运维工作中有许多的任务要执行&#xff0c;例如项目发布/数据备份/定时巡检/证书更新/漏洞修复等等&#xff0c;大部分的任务都会有多个步骤共同完成&#xff0c;例如一个发布任务会有拉代码、编译、分发、通知等等步骤&#xff0c;而不同的任务可能还包含相同或相似的步骤…

应用稳定性优化1:ANR问题全面解析

闪退、崩溃、无响应、重启等是应用稳定性常见的问题现象&#xff0c;稳定性故障大体可归类为ANR/冻屏、Crash/Tombstone、资源泄露三大类。本文通过对三类故障的产生原因、故障现象、触发机制及如何定位等&#xff0c;展开深度解读。 本文将详解ANR类故障&#xff0c;并通过一…

如何在群晖Docker运行本地聊天机器人并结合内网穿透发布到公网访问

文章目录 1. 拉取相关的Docker镜像2. 运行Ollama 镜像3. 运行Chatbot Ollama镜像4. 本地访问5. 群晖安装Cpolar6. 配置公网地址7. 公网访问8. 固定公网地址 随着ChatGPT 和open Sora 的热度剧增,大语言模型时代,开启了AI新篇章,大语言模型的应用非常广泛&#xff0c;包括聊天机…

【MicroPython教程】SSD1306 oled

文章目录 前言一、OLED的介绍二、下载ssd1306驱动三、ssd1306驱动的使用3.1 oled屏连线3.2 初始化oled3.3 画图函数填充整个屏幕显示画点滚动写字画圆形画弧画无填充的矩形画填充矩形画线画xbm图像 四、示例代码——正弦函数总结 前言 SSD1306 OLED 是一种常见的小型显示屏&am…

​MPV,汽车产品里一个特殊品类的进化过程

「汽车」可能是整个工业革命以来&#xff0c;所诞生出的最有趣的工业产品。 它不仅能产生工业的机械美&#xff0c;还诞生了一个独立的文化体系&#xff0c;在汽车的发展过程中&#xff0c;我们也能看到一些本来应功能而诞生的产品&#xff0c;最终走向了千家万户。 MPV 就是…

【王道数据结构】【chapter8排序】【P371t6】

试设计一个算法&#xff0c;判断一个数据序列是否构成一个小根堆&#xff08;下面代码中的堆排序的部分仅仅是为了方便设计测试用例&#xff09; #include <iostream> #include<time.h> #include<stdlib.h>int * buildarray(int size) {int* tmp(int *) mall…

Java毕业设计-基于springboot开发的家政服务管理平台系统-毕业论文+答辩PPT(有源代码)

文章目录 前言一、毕设成果演示&#xff08;源代码在文末&#xff09;二、毕设摘要展示1.开发说明2.需求分析3、系统功能结构 三、系统实现展示1、前台模块设计2、后台功能模块2.1管理员功能模块2.2用户功能模块2.3服务人员功能模块 四、毕设内容和源代码获取总结 Java毕业设计…

P2040 打开所有的灯

题目传送门&#xff1a;P2040 打开所有的灯 用深度优先搜索实现的一个填色题。 题目步骤&#xff1a; 1..dfs 首先dfs要判断是否符合题意&#xff0c;如果符合题意就更新最短路&#xff1b; 如果不符合题意就枚举 如果是关的就把周围四个包括 给标记上和原来相反的&#xf…

文件怎么减小内存?4个简单的方法~

随着我们在电脑或移动设备上创建、下载和收集越来越多的文件&#xff0c;存储空间的管理变得尤为重要。有时&#xff0c;文件太大会占用过多的内存&#xff0c;导致存储空间不足的问题。但别担心&#xff0c;本文将向您介绍五种简单有效的方法&#xff0c;帮助您轻松减小文件的…

SpringBoot启动扩展应用:干预优化+加快启动时间(干货典藏版)

一、SpringBoot启动过程干预 Spring Boot启动过程中我们可以实现以下干预工作&#xff1a; 修改Spring Boot默认的配置属性。使用ConfigurationProperties和EnableConfigurationProperties注解&#xff0c;可以获取和修改Spring Boot的配置属性。 加载配置文件。Spring Boot会…

深度伪造,让网络钓鱼更加难以辨别

网络钓鱼一直是安全领域的一个突出话题&#xff0c;尽管这类诈骗形式已经存在了几十年&#xff0c;依旧是欺诈攻击或渗透组织的最有效方法之一。诈骗分子基于社会工程原理&#xff0c;通过邮件、网站以及电话、短信和社交媒体&#xff0c;利用人性&#xff08;如冲动、不满、好…

JavaWeb之 Web概述

目录 前言1.1 Web和 JavaWeb的概念1.2 JavaWeb技术栈1.2.1 B/S架构1.2.2 静态资源1.2.3 动态资源1.2.4 数据库1.2.5 HTTP协议1.2.6 Web服务器 1.3 JavaWeb 学习内容 前言 博主将用 CSDN 记录 Java 后端开发学习之路上的经验&#xff0c;并将自己整理的编程经验和知识分享出来&a…