【代码解读】OpenCOOD框架之model模块(以PointPillarFCooper为例)

point_pillar_fcooper

  • PointPillarFCooper
  • PointPillars
    • PillarVFE
    • PFNLayer
    • PointPillarScatter
    • BaseBEVBackbone
    • DownsampleConv
      • DoubleConv
  • SpatialFusion
  • 检测头

(紧扣PointPillarFCooper的框架结构,一点一点看代码)

PointPillarFCooper

# -*- coding: utf-8 -*-
# Author: Runsheng Xu <rxx3386@ucla.edu>
# License: TDG-Attribution-NonCommercial-NoDistrib
import pprintimport torch.nn as nnfrom opencood.models.sub_modules.pillar_vfe import PillarVFE
from opencood.models.sub_modules.point_pillar_scatter import PointPillarScatter
from opencood.models.sub_modules.base_bev_backbone import BaseBEVBackbone
from opencood.models.sub_modules.downsample_conv import DownsampleConv
from opencood.models.sub_modules.naive_compress import NaiveCompressor
from opencood.models.fuse_modules.f_cooper_fuse import SpatialFusionclass PointPillarFCooper(nn.Module):"""F-Cooper implementation with point pillar backbone."""def __init__(self, args):super(PointPillarFCooper, self).__init__()print("args: ")pprint.pprint(args)self.max_cav = args['max_cav']# PIllar VFE Voxel Feature Encodingself.pillar_vfe = PillarVFE(args['pillar_vfe'],num_point_features=4,voxel_size=args['voxel_size'],point_cloud_range=args['lidar_range'])self.scatter = PointPillarScatter(args['point_pillar_scatter'])self.backbone = BaseBEVBackbone(args['base_bev_backbone'], 64)# used to downsample the feature map for efficient computationself.shrink_flag = Falseif 'shrink_header' in args:self.shrink_flag = Trueself.shrink_conv = DownsampleConv(args['shrink_header'])self.compression = Falseif args['compression'] > 0:self.compression = Trueself.naive_compressor = NaiveCompressor(256, args['compression'])self.fusion_net = SpatialFusion()self.cls_head = nn.Conv2d(128 * 2, args['anchor_number'],kernel_size=1)self.reg_head = nn.Conv2d(128 * 2, 7 * args['anchor_number'],kernel_size=1)if args['backbone_fix']:self.backbone_fix()
  • args: 其实就是从hypes_yaml配置文件里传来的参数
args:
{'anchor_number': 2,'backbone_fix': False,'base_bev_backbone': {'layer_nums': [3, 5, 8],'layer_strides': [2, 2, 2],'num_filters': [64, 128, 256],'num_upsample_filter': [128, 128, 128],'upsample_strides': [1, 2, 4]},'compression': 0,'lidar_range': [-140.8, -40, -3, 140.8, 40, 1],'max_cav': 5,'pillar_vfe': {'num_filters': [64],'use_absolute_xyz': True,'use_norm': True,'with_distance': False},'point_pillar_scatter': {'grid_size': array([704, 200,   1], dtype=int64),'num_features': 64},'shrink_header': {'dim': [256],'input_dim': 384,'kernal_size': [1],'padding': [0],'stride': [1]},'voxel_size': [0.4, 0.4, 4]}
    def backbone_fix(self):"""Fix the parameters of backbone during finetune on timedelay。"""for p in self.pillar_vfe.parameters():p.requires_grad = Falsefor p in self.scatter.parameters():p.requires_grad = Falsefor p in self.backbone.parameters():p.requires_grad = Falseif self.compression:for p in self.naive_compressor.parameters():p.requires_grad = Falseif self.shrink_flag:for p in self.shrink_conv.parameters():p.requires_grad = Falsefor p in self.cls_head.parameters():p.requires_grad = Falsefor p in self.reg_head.parameters():p.requires_grad = False

backbone_fix 方法用于在模型微调过程中固定骨干网络的参数,以避免它们被更新。
遍历了模型中各个需要固定参数的组件,并将它们的 requires_grad 属性设置为 False,这意味着这些参数不会被优化器更新。
我们来看 forward 方法:

    def forward(self, data_dict):voxel_features = data_dict['processed_lidar']['voxel_features']voxel_coords = data_dict['processed_lidar']['voxel_coords']voxel_num_points = data_dict['processed_lidar']['voxel_num_points']record_len = data_dict['record_len']batch_dict = {'voxel_features': voxel_features,'voxel_coords': voxel_coords,'voxel_num_points': voxel_num_points,'record_len': record_len}# n, 4 -> n, cbatch_dict = self.pillar_vfe(batch_dict)# n, c -> N, C, H, Wbatch_dict = self.scatter(batch_dict)batch_dict = self.backbone(batch_dict)spatial_features_2d = batch_dict['spatial_features_2d']# downsample feature to reduce memoryif self.shrink_flag:spatial_features_2d = self.shrink_conv(spatial_features_2d)# compressorif self.compression:spatial_features_2d = self.naive_compressor(spatial_features_2d)fused_feature = self.fusion_net(spatial_features_2d, record_len)psm = self.cls_head(fused_feature)rm = self.reg_head(fused_feature)output_dict = {'psm': psm,'rm': rm}return output_dict

forward 方法定义了模型的前向传播过程。它接受一个数据字典作为输入,包含了经过处理的点云数据。
首先,从输入字典中提取出点云特征、体素坐标、体素点数等信息。
然后,依次将数据通过 pillar_vfe、scatter 和 backbone 这几个模块进行处理,得到了一个包含了空间特征的张量 spatial_features_2d。
如果启用了特征图的下采样(shrink_flag 为 True),则对 spatial_features_2d 进行下采样。
如果启用了特征压缩(compression 为 True),则对 spatial_features_2d 进行压缩。
最后,将压缩后的特征通过 fusion_net 进行融合,并通过 cls_head 和 reg_head 进行分类和回归,得到预测结果。
整个 forward 方法实现了模型的数据流动过程,从输入数据到最终输出结果的计算过程。

  • PointPillarsFcooper结构
PointPillarFCooper((pillar_vfe): PillarVFE((pfn_layers): ModuleList((0): PFNLayer((linear): Linear(in_features=10, out_features=64, bias=False)(norm): BatchNorm1d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True))))(scatter): PointPillarScatter()(backbone): BaseBEVBackbone((blocks): ModuleList((0): Sequential((0): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)(1): Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2), bias=False)(2): BatchNorm2d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(3): ReLU()(4): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(5): BatchNorm2d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(6): ReLU()(7): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(8): BatchNorm2d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(9): ReLU()(10): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(11): BatchNorm2d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(12): ReLU())(1): Sequential((0): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)(1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), bias=False)(2): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(3): ReLU()(4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(5): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(6): ReLU()(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(8): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(9): ReLU()(10): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(11): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(12): ReLU()(13): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(14): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(15): ReLU()(16): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(17): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(18): ReLU())(2): Sequential((0): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)(1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), bias=False)(2): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(3): ReLU()(4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(5): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(6): ReLU()(7): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(8): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(9): ReLU()(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(11): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(12): ReLU()(13): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(14): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(15): ReLU()(16): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(17): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(18): ReLU()(19): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(20): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(21): ReLU()(22): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(23): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(24): ReLU()(25): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(26): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(27): ReLU()))(deblocks): ModuleList((0): Sequential((0): ConvTranspose2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(2): ReLU())(1): Sequential((0): ConvTranspose2d(128, 128, kernel_size=(2, 2), stride=(2, 2), bias=False)(1): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(2): ReLU())(2): Sequential((0): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(4, 4), bias=False)(1): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(2): ReLU())))(shrink_conv): DownsampleConv((layers): ModuleList((0): DoubleConv((double_conv): Sequential((0): Conv2d(384, 256, kernel_size=(1, 1), stride=(1, 1))(1): ReLU(inplace=True)(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU(inplace=True)))))(fusion_net): SpatialFusion()(cls_head): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))(reg_head): Conv2d(256, 14, kernel_size=(1, 1), stride=(1, 1))
)

PointPillars

在这里插入图片描述
网络overview:网络的主要组成部分是PFN、Backbone和 SSD 检测头。原始点云被转换为堆叠的柱子张量和柱子索引张量。编码器使用堆叠的柱子来学习一组特征,这些特征可以分散回卷积神经网络的 2D 伪图像。检测头使用来自主干的特征来预测对象的 3D 边界框。请注意:在这里,我们展示了汽车网络的骨干维度。

PillarVFE

就是 voxel feature encoder:先对点云进行特征提取
VFE由PFNLayer(Pillar Feature Net)组成

  • model_cfg
{'num_filters': [64],'use_absolute_xyz': True,'use_norm': True,'with_distance': False},
class PillarVFE(nn.Module):def __init__(self, model_cfg, num_point_features, voxel_size,point_cloud_range):super().__init__()self.model_cfg = model_cfgself.use_norm = self.model_cfg['use_norm']self.with_distance = self.model_cfg['with_distance']self.use_absolute_xyz = self.model_cfg['use_absolute_xyz']num_point_features += 6 if self.use_absolute_xyz else 3if self.with_distance:num_point_features += 1self.num_filters = self.model_cfg['num_filters']assert len(self.num_filters) > 0num_filters = [num_point_features] + list(self.num_filters)pfn_layers = []for i in range(len(num_filters) - 1):in_filters = num_filters[i]out_filters = num_filters[i + 1]pfn_layers.append(PFNLayer(in_filters, out_filters, self.use_norm,last_layer=(i >= len(num_filters) - 2)))self.pfn_layers = nn.ModuleList(pfn_layers)self.voxel_x = voxel_size[0]self.voxel_y = voxel_size[1]self.voxel_z = voxel_size[2]self.x_offset = self.voxel_x / 2 + point_cloud_range[0]self.y_offset = self.voxel_y / 2 + point_cloud_range[1]self.z_offset = self.voxel_z / 2 + point_cloud_range[2]

PFNLayer

这里只是一个全连接+归一化(好像和原来的算法有出入)

class PFNLayer(nn.Module):def __init__(self,in_channels,out_channels,use_norm=True,last_layer=False):super().__init__()self.last_vfe = last_layerself.use_norm = use_normif not self.last_vfe:out_channels = out_channels // 2if self.use_norm:self.linear = nn.Linear(in_channels, out_channels, bias=False)self.norm = nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01)else:self.linear = nn.Linear(in_channels, out_channels, bias=True)self.part = 50000

PointPillarScatter

主要作用就是三维点云压缩成bev(鸟瞰图)

class PointPillarScatter(nn.Module):def __init__(self, model_cfg):super().__init__()self.model_cfg = model_cfgself.num_bev_features = self.model_cfg['num_features']self.nx, self.ny, self.nz = model_cfg['grid_size']assert self.nz == 1
  • model_cfg:
{'grid_size': array([704, 200,   1], dtype=int64),'num_features': 64}

BaseBEVBackbone

参考这个图
在这里插入图片描述
3 * Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

5 * Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

8 * Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

3、5、8对应着layer_nums

  • model_cfg
{'layer_nums': [3, 5, 8],'layer_strides': [2, 2, 2],'num_filters': [64, 128, 256],'num_upsample_filter': [128, 128, 128],'upsample_strides': [1, 2, 4]},
class BaseBEVBackbone(nn.Module):def __init__(self, model_cfg, input_channels):super().__init__()self.model_cfg = model_cfgif 'layer_nums' in self.model_cfg:assert len(self.model_cfg['layer_nums']) == \len(self.model_cfg['layer_strides']) == \len(self.model_cfg['num_filters'])layer_nums = self.model_cfg['layer_nums']layer_strides = self.model_cfg['layer_strides']num_filters = self.model_cfg['num_filters']else:layer_nums = layer_strides = num_filters = []if 'upsample_strides' in self.model_cfg:assert len(self.model_cfg['upsample_strides']) \== len(self.model_cfg['num_upsample_filter'])num_upsample_filters = self.model_cfg['num_upsample_filter']upsample_strides = self.model_cfg['upsample_strides']else:upsample_strides = num_upsample_filters = []num_levels = len(layer_nums)   # len(layer_nums)个Sequentialc_in_list = [input_channels, *num_filters[:-1]]self.blocks = nn.ModuleList()self.deblocks = nn.ModuleList()for idx in range(num_levels):cur_layers = [nn.ZeroPad2d(1),nn.Conv2d(c_in_list[idx], num_filters[idx], kernel_size=3,stride=layer_strides[idx], padding=0, bias=False),nn.BatchNorm2d(num_filters[idx], eps=1e-3, momentum=0.01),nn.ReLU()]for k in range(layer_nums[idx]):  # 每个Sequential里有多少个以下结构cur_layers.extend([nn.Conv2d(num_filters[idx], num_filters[idx],kernel_size=3, padding=1, bias=False),nn.BatchNorm2d(num_filters[idx], eps=1e-3, momentum=0.01),nn.ReLU()])self.blocks.append(nn.Sequential(*cur_layers))# 以下是deblock模块if len(upsample_strides) > 0:stride = upsample_strides[idx]if stride >= 1:self.deblocks.append(nn.Sequential(nn.ConvTranspose2d(num_filters[idx], num_upsample_filters[idx],upsample_strides[idx],stride=upsample_strides[idx], bias=False),nn.BatchNorm2d(num_upsample_filters[idx],eps=1e-3, momentum=0.01),nn.ReLU()))else:stride = np.round(1 / stride).astype(np.int)self.deblocks.append(nn.Sequential(nn.Conv2d(num_filters[idx], num_upsample_filters[idx],stride,stride=stride, bias=False),nn.BatchNorm2d(num_upsample_filters[idx], eps=1e-3,momentum=0.01),nn.ReLU()))c_in = sum(num_upsample_filters)if len(upsample_strides) > num_levels:self.deblocks.append(nn.Sequential(nn.ConvTranspose2d(c_in, c_in, upsample_strides[-1],stride=upsample_strides[-1], bias=False),nn.BatchNorm2d(c_in, eps=1e-3, momentum=0.01),nn.ReLU(),))self.num_bev_features = c_in

DownsampleConv

其实就是下采样(用了几个DoubleConv)
主要作用就是

  • 降低计算成本: 在深度神经网络中,参数量和计算量通常会随着输入数据的尺寸增加而增加。通过下采样,可以降低每个层的输入数据的尺寸,从而降低网络的计算成本。
  • 减少过拟合: 下采样可以通过减少输入数据的维度和数量来减少模型的复杂性,从而有助于降低过拟合的风险。过拟合是指模型在训练数据上表现良好,但在测试数据上表现较差的现象。
  • 提高模型的泛化能力: 通过减少输入数据的空间分辨率,下采样有助于模型学习更加抽象和通用的特征,从而提高了模型对于不同数据的泛化能力。
  • 加速训练和推理过程: 由于下采样可以降低网络的计算成本,因此可以加快模型的训练和推理过程。这对于处理大规模数据和实时应用特别有用。
class DownsampleConv(nn.Module):def __init__(self, config):super(DownsampleConv, self).__init__()self.layers = nn.ModuleList([])input_dim = config['input_dim']for (ksize, dim, stride, padding) in zip(config['kernal_size'],config['dim'],config['stride'],config['padding']):self.layers.append(DoubleConv(input_dim,dim,kernel_size=ksize,stride=stride,padding=padding))input_dim = dim

config参数

{'dim': [256],'input_dim': 384,'kernal_size': [1],'padding': [0],'stride': [1]},

DoubleConv

其实就是两层卷积

class DoubleConv(nn.Module):"""Double convoltuionArgs:in_channels: input channel numout_channels: output channel num"""def __init__(self, in_channels, out_channels, kernel_size,stride, padding):super().__init__()self.double_conv = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size,stride=stride, padding=padding),nn.ReLU(inplace=True),nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),nn.ReLU(inplace=True))

SpatialFusion

其实就是取最大来进行融合特征
在这里插入图片描述

class SpatialFusion(nn.Module):def __init__(self):super(SpatialFusion, self).__init__()def regroup(self, x, record_len):cum_sum_len = torch.cumsum(record_len, dim=0)split_x = torch.tensor_split(x, cum_sum_len[:-1].cpu())return split_xdef forward(self, x, record_len):# x: B, C, H, W, split x:[(B1, C, W, H), (B2, C, W, H)]split_x = self.regroup(x, record_len)out = []for xx in split_x:xx = torch.max(xx, dim=0, keepdim=True)[0]out.append(xx)return torch.cat(out, dim=0)

检测头

(cls_head): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))
(reg_head): Conv2d(256, 14, kernel_size=(1, 1), stride=(1, 1))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2815034.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Docker Volume

"Ice in my vein" Docker Volume(存储卷) 什么是存储卷? 存储卷就是: “将宿主机的本地文件系统中存在的某个目录&#xff0c;与容器内部的文件系统上的某一目录建立绑定关系”。 存储卷与容器本身的联合文件系统&#xff1f; 在宿主机上的这个与容器形成绑定关系…

js 常见报错 | js 获取数据类型 | js 判断是否是数组

文章目录 js 常见报错1.1 SyntaxError&#xff08;语法错误&#xff09;1.2 ReferenceError&#xff08;引用错误&#xff09;1.3 RangeError&#xff08;范围错误&#xff09;1.4 TypeError&#xff08;类型错误&#xff09;1.5 URLError&#xff08;URL错误&#xff09;1.6 手…

软考50-上午题-【数据库】-SQL访问控制

一、SQL访问控制 数据控制&#xff0c;控制的是用户对数据的存储权力&#xff0c;由DBA决定。 DBA&#xff1a;数据库管理员。 DBMS数据控制应该具有一下功能&#xff1a; 1-1、授权语句格式 说明&#xff1a; 示例&#xff1a; 1-2、收回权限语句格式 示例&#xff1a; PUBLI…

海外社媒营销:动态住宅代理IP的妙用

动态代理IP&#xff0c;顾名思义&#xff0c;是一种可以动态变化的IP地址。与传统的静态IP地址不同&#xff0c;动态代理IP在每次网络请求时都能提供一个新的IP地址。在进行海外推广活动时&#xff0c;它的应用非常关键。 动态代理IP的工作原理基于一个庞大的IP地址池。当用户…

Unity中字符串拼接0GC方案

本文主要分析C#字符串拼接产生GC的原因&#xff0c;以及介绍名为ZString的库&#xff0c;它可以将字符串生成的内存分配为零。 在C#中&#xff0c;字符串拼接通常有三种方式&#xff1a; 直接使用号连接&#xff1b;string.format;使用StringBuilder&#xff1b; 下面分别细…

基于springboot的4S店车辆管理系统源码和论文

随着信息技术和网络技术的飞速发展&#xff0c;人类已进入全新信息化时代&#xff0c;传统管理技术已无法高效&#xff0c;便捷地管理信息。为了迎合时代需求&#xff0c;优化管理效率&#xff0c;各种各样的管理系统应运而生&#xff0c;各行各业相继进入信息管理时代&#xf…

使用 gregwar/captcha 生成固定字符的验证码

图片验证码生成失败 $captcha new CaptchaBuilder("58 ?"); $code $captcha->getPhrase();\Cache::put($key, [phone > $phone, code > $captcha->getPhrase()], $expiredAt);$captcha->build(); $result [captcha_key > $key,expired_at >…

海量物理刚体 高性能物理引擎Unity Physics和Havok Physics的简单性能对比

之前的博客中我们为了绕过ECS架构&#xff0c;相当于单独用Batch Renderer Group实现了一个精简版的Entities Graphics&#xff0c;又使用Jobs版RVO2实现了10w人同屏避障移动。 万人同屏对抗割草 性能测试 PC 手机端 性能表现 弹幕游戏 海量单位同屏渲染 锁敌 避障 非ECS 那么有…

深入浅出JVM(十六)之三色标记法与并发可达性分析

上篇文章深入浅出JVM&#xff08;十五&#xff09;之垃圾回收器&#xff08;上篇&#xff09;介绍性能指标吞吐量和延迟、串行收集器、并行收集器以及吞吐量优先收集器 为了更好的描述并发垃圾收集器&#xff0c;本篇文章将先深入浅出的介绍三色标记法以及并发可达性分析遇到的…

批量获取图片(中)

1.图片标签 img是图片标签&#xff1b;alt是对图片标签的描述 2.获取网页内容 接下来&#xff0c;使用requests模块和BeautifulSoup模块请求并解析网页内容。 在爬取新的网页内容前&#xff0c;我们需要导入requests模块&#xff0c;请求并查看状态码。 拿到网页源代码后&am…

账户名密码是怎样被窃取的,简单模拟攻击者权限维持流程。

前言 在我们进行渗透测试的时候&#xff0c;常常需要进行权限维持&#xff0c;常见的 Javascript窃取用户凭证是一种常见的攻击手法。之前我们可能学习过钓鱼网页的使用&#xff0c;如果我们通过渗透测试进入到用户的服务器&#xff0c;其实也可以通过在网页中植入Javascript代…

JavaEE:多线程(3):案例代码

目录 案例一&#xff1a;单例模式 饿汉模式 懒汉模式 思考&#xff1a;懒汉模式是否线程安全&#xff1f; 案例二&#xff1a;阻塞队列 可以实现生产者消费者模型 削峰填谷 接下来我们自己实现一个阻塞队列 1.先实现一个循环队列 2. 引入锁&#xff0c;实现线程安全 …

揭秘「 B 站最火的 RAG 应用」是如何炼成的

近日&#xff0c;bilibili 知名科技 UP 主“Ele 实验室”发布了一个视频&#xff0c;标题为“当我开发出史料检索 RAG 应用&#xff0c;正史怪又该如何应对&#xff1f;” 。 视频连续三天被平台打上“热门”标签&#xff0c;并迅速登上科技板块全区排行榜前列。截至目前&#…

尚硅谷webpack5笔记2

Loader 原理 loader 概念 帮助 webpack 将不同类型的文件转换为 webpack 可识别的模块。 loader 执行顺序 分类pre: 前置 loadernormal: 普通 loaderinline: 内联 loaderpost: 后置 loader执行顺序4 类 loader 的执行优级为:pre > normal > inline > post 。相…

Springboot+vue图书管理系统(小白)

图书管理系统 简介&#xff1a;一个最简约的图书管理系统&#xff0c;适用于小白用来练手 前端&#xff1a;VueElementUIechars 后端&#xff1a;SpringbootMybatisMySQL 功能模块&#xff1a; 信息管理&#xff1a;公告信息 操作日志 用户管理&#xff1a;用户信息 图书…

IntelliJ IDEA下Spring Boot多环境配置教程

&#x1f31f;&#x1f30c; 欢迎来到知识与创意的殿堂 — 远见阁小民的世界&#xff01;&#x1f680; &#x1f31f;&#x1f9ed; 在这里&#xff0c;我们一起探索技术的奥秘&#xff0c;一起在知识的海洋中遨游。 &#x1f31f;&#x1f9ed; 在这里&#xff0c;每个错误都…

基于51单片机烟雾报警器数码管显示( proteus仿真+程序+设计报告+讲解视频)

基于51单片机烟雾报警器数码管显示( proteus仿真程序设计报告讲解视频&#xff09; 仿真图proteus7.8及以上 程序编译器&#xff1a;keil 4/keil 5 编程语言&#xff1a;C语言 设计编号&#xff1a;S0067 1. 主要功能&#xff1a; 基于51单片机的烟雾报警器proteus仿真设…

Spring中 Unsupported class file major version 61 报错

初学Spring时遇到的一个错误&#xff1a;Unsupported class file major version 61 &#xff0c;如图所示&#xff1a; 网上查了一下大概是JDK的版本与Spring的版本不一致导致的错误&#xff1b;刚开始我用的Spring版本是&#xff1a; <dependencies><dependency>…

PostgreSQL教程(十一):SQL语言(四)之数据类型

一、数值类型 数值类型由 2 字节、4 字节或 8 字节的整数以及 4 字节或 8 字节的浮点数和可选精度的十进制数组成。 下表列出了所有可用类型。 数值类型 名字存储长度描述范围smallint2 字节小范围整数-32768 到 32767integer4 字节常用的整数-2147483648 到 2147483647bigi…

个人建站前端篇(七)vite + vue3企业级项目模板

一、vite命令行创建项目 npm create vitelatest根据提示选择模板&#xff0c;选择vite vue3 ts即可。 二、项目连接远程仓库 git init git remote add origin https://gitee.com/niech_project/vite-vue3-template.git git pull origin master git checkout -b dev三、项目…