GSVA -- 学习记录

文章目录

  • 1.原理简介
  • 2. 注意事项
  • 3. 功能实现
        • 代码实现部分
  • 4.可视化
  • 5.与GSEA比较

1.原理简介

Gene Set Variation Analysis (GSVA) 基因集变异分析。可以简单认为是样本数据中的基因根据表达量排序后形成了一个rank list,这个rank list 与 预设的gene sets(a set of genes forming a pathway or some other functional unit)进行比较,用KS test计算分布差异(GSVA enrichment score is either the difference between the two sums or the maximum deviation from zero),最大差异作为enrichment score。

在这里插入图片描述
算法主要做了四件事:
1.Kernel estimation of the cumulative density function (kcdf). 实现基因表达量的非参估计,使得样本间基因表达量高低可比。或者就简单认为是一种 rank,只不过rank方法是KS分布计算出来的数值决定的。

2.The expression-level statistic is rank ordered for each sample。同上述,进行样本内gene rank

3.For every gene set, the Kolmogorov-Smirnov-like rank statistic is calculated. rank 后的样本gene set 与预设的gene set 计算分布差异。

4.The GSVA enrichment score is either the difference between the two sums or the maximum deviation from zero. 将第三步计算的分布差异转换成 GSVA enrichment score。


2. 注意事项

  1. 基因表达量的数值影响gsva的参数设置:
    while microarray data, transform values to log2(values) and set paramseter kcdf=“Poisson”
    while RNAseq values of expression data is integer count, set paramseter kcdf=“Poisson”
    whlie RNAseq values of expression data is log-CPMs, log-RPKMs or log-TPMs , set paramseter kcdf=“Gaussian”

  2. gsva 函数执行的默认过滤操作:

    • matches gene identifiers between gene sets and gene expression values,gene expression matrix中无法match的gene会被剔除
    • it discards gene sets that do not meet minimum and maximumgene set size requirements specified with the arguments min.sz and max.sz 。我没搞清楚这个是样本内的gene set 还是预设的gene set大小不符合设置会被过滤掉。
  3. 得到GSVA ES后如果想进行差异分析时,该如何操作:
    unchanged the default argument mx.diff=TRUE to obtain approximately normally distributed ES
    and use limma on the resulting GSVA enrichment scores,finally get plots.

  4. 变异分的计算:
    two approaches for turning the KS like random walk statistic into an enrichment statistic (ES) (also called GSVA score), the classical maximum deviation method & a normalized ES

    classical maximum deviation method的含义 : the maximum deviation from zero of the random walk of the j-th sample with respect to the k-th gene set (gsva函数参数设置: mx.diff =TRUE

    a normalized ES 的含义: 零假设下(no change in pathway activity throughout the sample population)enrichment scores 应该是个正态分布。(个人还是觉得第一种算分方法靠谱)(gsva函数参数设置: mx.diff =FALSE


3. 功能实现

大致可以实现如下两个目的:

  • 单样本内的gene sets 识别,也可以认为得到 gene signatures。
  • 多样本ES 比较,识别差异 gene sets,然后聚类,根据gene sets标识样本生物学属性。(单细胞分析中有些人就是这样干的,他们不是基于图的聚类方法 去细胞聚类然后再找DE,最后注释细胞类群。他们让每个细胞与预设的gene sets比较得到 GSVA ES,然后根据ES聚类,从而划分出来细胞类群,然后说这类细胞特化/极化出了啥表型,有啥用,巴拉巴拉一个故事)。
代码实现部分
# 准备表达矩阵
list.files("G:/20240223-project-HY0007-GSVA-analysis-result/")expr <- read.table("../TPM_DE.filter.txt",sep = "\t",header = T,row.names = 1)
head(expr)
expr <- as.matrix(expr) # 需要转换成matrix或者 ExpressionSet object

在这里插入图片描述

# 准备预设的gene sets
# install.packages("msigdbr")
library(msigdbr)
## msigdbr包提取下载 先试试KEGG和GO做GSVA分析
##KEGG
KEGG_df_all <-  msigdbr(species = "Homo sapiens", # Homo sapiens or Mus musculuscategory = "C2",subcategory = "CP:KEGG") 
KEGG_df <- dplyr::select(KEGG_df_all,gs_name,gs_exact_source,gene_symbol)
kegg_list <- split(KEGG_df$gene_symbol, KEGG_df$gs_name) ##按照gs_name给gene_symbol分组##GO
GO_df_all <- msigdbr(species = "Homo sapiens",category = "C5")
GO_df <- dplyr::select(GO_df_all, gs_name, gene_symbol, gs_exact_source, gs_subcat)
GO_df <- GO_df[GO_df$gs_subcat!="HPO",]
go_list <- split(GO_df$gene_symbol, GO_df$gs_name) ##按照gs_name给gene_symbol分组## manual operation
list.files("../")
library(GSEABase) # 读取 Gmt文件myself_geneset <- getGmt("../my_signature.symbols.gmt.txt")
####  GSVA  ####
# geneset 1
geneset <- go_list
gsva_mat <- gsva(expr=expr, gset.idx.list=geneset, kcdf="Gaussian" ,#"Gaussian" for logCPM,logRPKM,logTPM, "Poisson" for countsverbose=T, mx.diff =TRUE,# 下游做limma得到差异通路min.sz = 10 # gene sets 少于10个gene的过滤掉)write.csv(gsva_mat,"gsva_go_matrix.csv")# geneset 2
geneset <- kegg_list
gsva_mat <- gsva(expr=expr, gset.idx.list=geneset, kcdf="Gaussian" ,#"Gaussian" for logCPM,logRPKM,logTPM, "Poisson" for countsverbose=T, mx.diff =TRUE,# 下游做limma得到差异通路min.sz = 10 # gene sets 少于10个gene的过滤掉
)write.csv(gsva_mat,"gsva_kegg_matrix.csv")# geneset 3
geneset <- myself_geneset
gsva_mat <- gsva(expr=expr, gset.idx.list=geneset, kcdf="Gaussian" ,#"Gaussian" for logCPM,logRPKM,logTPM, "Poisson" for countsverbose=T, mx.diff =TRUE,# 下游做limma得到差异通路min.sz = 10 # gene sets 少于10个gene的过滤掉
)write.csv(gsva_mat,"gsva_myself_matrix.csv")
# 拿到结果后做可视化分析 一般是火山图和柱状偏差图或者热图

4.可视化

# 先整体来张热图
pheatmap::pheatmap(gsva_mat,cluster_rows = T,show_rownames = F,cluster_cols = F)

在这里插入图片描述

# KEGG条目或者GO条目太多了,做个差异分析过滤掉一些不显著差异的
#### 进行limma差异处理 ####
##设定 实验组exp / 对照组ctr
# 不需要进行 limma-trend 或 voom的步骤
library(limma)group_list <- colnames(expr)
design <- model.matrix(~0+factor(group_list))
designcolnames(design) <- levels(factor(group_list))
rownames(design) <- colnames(gsva_mat)
contrast.matrix <- makeContrasts(contrasts=paste0(exp,'-',ctr),  #"exp/ctrl"levels = design)fit1 <- lmFit(gsva_mat,design)                 #拟合模型
fit2 <- contrasts.fit(fit1, contrast.matrix) #统计检验
efit <- eBayes(fit2)                         #修正summary(decideTests(efit,lfc=1, p.value=0.05)) #统计查看差异结果
tempOutput <- topTable(efit, coef=paste0(exp,'-',ctr), n=Inf)
degs <- na.omit(tempOutput) 
write.csv(degs,"gsva_go_degs.results.csv")#### 对GSVA的差异分析结果进行热图可视化 #### 
##设置筛选阈值
padj_cutoff=0.05
log2FC_cutoff=log2(2)keep <- rownames(degs[degs$adj.P.Val < padj_cutoff & abs(degs$logFC)>log2FC_cutoff, ])
length(keep)
dat <- gsva_mat[keep[1:50],] #选取前50进行展示degs$significance  <- as.factor(ifelse(degs$adj.P.Val < padj_cutoff & abs(degs$logFC) > log2FC_cutoff,ifelse(degs$logFC > log2FC_cutoff ,'UP','DOWN'),'NOT'))# 火山图
this_title <- paste0(' Up :  ',nrow(degs[degs$significance =='UP',]) ,'\n Down : ',nrow(degs[degs$significance =='DOWN',]),'\n adj.P.Val <= ',padj_cutoff,'\n FoldChange >= ',round(2^log2FC_cutoff,3))g <- ggplot(data=degs, aes(x=logFC, y=-log10(adj.P.Val),color=significance)) +#点和背景geom_point(alpha=0.4, size=1) +theme_classic()+ #无网格线#坐标轴xlab("log2 ( FoldChange )") + ylab("-log10 ( adj.P.Val )") +#标题文本ggtitle( this_title ) +#分区颜色                   scale_colour_manual(values = c('blue','grey','red'))+ #辅助线geom_vline(xintercept = c(-log2FC_cutoff,log2FC_cutoff),lty=4,col="grey",lwd=0.8) +geom_hline(yintercept = -log10(padj_cutoff),lty=4,col="grey",lwd=0.8) +#图例标题间距等设置theme(plot.title = element_text(hjust = 0.5), plot.margin=unit(c(2,2,2,2),'lines'), #上右下左legend.title = element_blank(),legend.position="right")ggsave(g,filename = 'GSVA_go_volcano_padj.pdf',width =8,height =7.5)#### 发散条形图绘制 ####
# install.packages("ggthemes")
# install.packages("ggprism")
library(ggthemes)
library(ggprism)p_cutoff=0.001
degs <- gsva_kegg_degs  #载入gsva的差异分析结果
Diff <- rbind(subset(degs,logFC>0)[1:20,], subset(degs,logFC<0)[1:20,]) #选择上下调前20通路     
dat_plot <- data.frame(id  = row.names(Diff),p   = Diff$P.Value,lgfc= Diff$logFC)
dat_plot$group <- ifelse(dat_plot$lgfc>0 ,1,-1)    # 将上调设为组1,下调设为组-1
dat_plot$lg_p <- -log10(dat_plot$p)*dat_plot$group # 将上调-log10p设置为正,下调-log10p设置为负
dat_plot$id <- str_replace(dat_plot$id, "KEGG_","");dat_plot$id[1:10]
dat_plot$threshold <- factor(ifelse(abs(dat_plot$p) <= p_cutoff,ifelse(dat_plot$lgfc >0 ,'Up','Down'),'Not'),levels=c('Up','Down','Not'))dat_plot <- dat_plot %>% arrange(lg_p)
dat_plot$id <- factor(dat_plot$id,levels = dat_plot$id)## 设置不同标签数量
low1 <- dat_plot %>% filter(lg_p < log10(p_cutoff)) %>% nrow()
low0 <- dat_plot %>% filter(lg_p < 0) %>% nrow()
high0 <- dat_plot %>% filter(lg_p < -log10(p_cutoff)) %>% nrow()
high1 <- nrow(dat_plot)p <- ggplot(data = dat_plot,aes(x = id, y = lg_p, fill = threshold)) +geom_col()+coord_flip() + scale_fill_manual(values = c('Up'= '#36638a','Not'='#cccccc','Down'='#7bcd7b')) +geom_hline(yintercept = c(-log10(p_cutoff),log10(p_cutoff)),color = 'white',size = 0.5,lty='dashed') +xlab('') + ylab('-log10(P.Value) of GSVA score') + guides(fill="none")+theme_prism(border = T) +theme(axis.text.y = element_blank(),axis.ticks.y = element_blank()) +geom_text(data = dat_plot[1:low1,],aes(x = id,y = 0.1,label = id),hjust = 0,color = 'black') + #黑色标签geom_text(data = dat_plot[(low1 +1):low0,],aes(x = id,y = 0.1,label = id),hjust = 0,color = 'grey') + # 灰色标签geom_text(data = dat_plot[(low0 + 1):high0,],aes(x = id,y = -0.1,label = id),hjust = 1,color = 'grey') + # 灰色标签geom_text(data = dat_plot[(high0 +1):high1,],aes(x = id,y = -0.1,label = id),hjust = 1,color = 'black') # 黑色标签ggsave("GSVA_barplot_pvalue.pdf",p,width = 15,height  = 15)

5.与GSEA比较

GSEA与GSVA 计算enrichment scores 方法类似,都是一个gene list 然后和预设的gene sets 比较,计算两者的距离。
距离计算公式都是max distance from zero of KS test.

不同的是GSEA得到的gene list 一般是根据样本间的logFC或者ratio of signal to noise 或者 样本内的relative expression,排序得到 sorted gene list 再与gene sets 计算 enrichment scores。

GSVA 得到gene list 的方法是根据kcdf累积分布计算样本内gene relative expression,然后排序得到 sorted gene list 再与gene sets 计算 enrichment scores。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2814019.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Nginx反向代理ip透传与负载均衡

前言 上篇介绍了nginx服务器单向代理和动静分离等相关内容&#xff0c;可参考Nginx重写功能和反向代理-CSDN博客&#xff0c;这里就ip透传和负载均衡对nginx反向代理做进一步了解。 目录 一、客户端ip透传 1. 概述 2. 一级代理 2.1 图示 2.2 操作过程 3. 二级代理 3.…

maven的私服

什么是maven的私服就是把自己写的工具类共享给别人这样大家都能用到你写的工具类不用重复写提示效率 maven的上传与下载示意图 1.什么是发行版本&#xff1f;发行版本指定的是功能稳定可以共大家使用的版本 2.什么是快照版本&#xff1f;快照版本指定的是指正在开发的版本 3…

Spring与SpringBoot入门

Spring入门 要使用Spring最起码需要引入两个依赖: <!-- Spring Core&#xff08;核心&#xff09; --><dependency><groupId>org.springframework</groupId><artifactId>spring-core</artifactId><version>5.3.20</version>…

PostgreSQL中int类型达到上限的一些处理方案

使用int类型作为表的主键在pg中是很常见的情况&#xff0c;但是pg中int类型的范围在-2147483648到2147483647&#xff0c;最大只有21亿&#xff0c;这个在一些大表中很容易就会达到上限。一旦达到上限&#xff0c;那么表中便没办法在插入数据了&#xff0c;这个将会是很严重的问…

网络安全之内容安全

内容安全 攻击可能只是一个点&#xff0c;防御需要全方面进行 IAE引擎 DFI和DPI技术--- 深度检测技术 DPI --- 深度包检测技术--- 主要针对完整的数据包&#xff08;数据包分片&#xff0c;分段需要重组&#xff09;&#xff0c;之后对 数据包的内容进行识别。&#xff08;应用…

Unity2023.1.19_Embedded Browser-ZFBrowser插件

Unity2023.1.19_Embedded Browser-ZFBrowser插件 官方说明文档可以仔细看一下&#xff1a; ZFBrowser Documentation (zenfulcrum.com) ZFBrowser插件的简单直接使用&#xff1a; 导入插件包资源&#xff0c;遵循常规导包原则即可&#xff1b; 抓取包文件夹下的预制体组件…

【Docker】安装及相关的命令

目录 一 Docker简介 1.1 是什么 1.2 优缺点 1.3 应用场景 1.4 安装 二 命令 2.1 Docker基本命令 2.2 Docker镜像命令 2.3 Docker容器命令 一 Docker简介 1.1 是什么 Docker是一个开源的应用容器引擎&#xff0c;它基于Go语言实现&#xff0c;并利用操作系统本身已有的…

Apache POl

介绍 Apache POl是一个处理Miscrosoft Ofice各种文件格式的开源项目。简单来说就是&#xff0c;我们可以使用 POI 在 Java 程序中对Miscrosoft Office各种文件进行读写操作,一般情况下&#xff0c;POI都是用于操作 Excel 文件。 Apache POl 的应用场景 1.银行网银系统导出交易…

禁止safari浏览器网页双击缩放功能

普通浏览器 普通浏览器&#xff0c;只需要增加meta标签禁止缩放功能就行了 <meta content"widthdevice-width, initial-scale1.0, maximum-scale1.0, user-scalable0;" name"viewport" /> user-scalableno或0 //禁止双指缩放页面initial-scale1.0…

【Java设计模式】四、适配器模式

文章目录 1、适配器模式2、举例 1、适配器模式 适配器模式Adapter Pattern&#xff0c;是做为两个不兼容的接口之间的桥梁目的是将一个类的接口转换成客户希望的另外一个接口适配器模式可以使得原本由于接口不兼容而不能一起工作的那些类可以一起工作 最后&#xff0c;适配器…

CSS3技巧37:JS+CSS3 制作旋转图片墙

开学了就好忙啊&#xff0c;Three.js 学习的进度很慢。。。 备课备课才是王道。 更一篇 JS CSS3 的内容&#xff0c;做一个图片墙。 其核心要点是把图片摆成这个样子&#xff1a; 看上去这个布局很复杂&#xff0c;其实很简单。其思路是&#xff1a; 所有图片放在一个 div.…

人工智能之Tensorflow程序结构

TensorFlow作为分布式机器学习平台&#xff0c;主要架构如下&#xff1a; 网络层&#xff1a;远程过程调用(gRPC)和远程直接数据存取(RDMA)作为网络层&#xff0c;主要负责传递神经网络算法参数。 设备层&#xff1a;CPU、GPU等设备&#xff0c;主要负责神经网络算法中具体的运…

【数据结构】OJ面试题《设计循环队列》(题库+代码)

1.前言 本题需要结构体和数组的知识&#xff0c;记录每天的刷题&#xff0c;继续坚持&#xff01; 2.OJ题目训练 设计循环队列 设计你的循环队列实现。 循环队列是一种线性数据结构&#xff0c;其操作表现基于 FIFO&#xff08;先进先出&#xff09;原则并且队尾被连接在队…

UE5 C++ 单播 多播代理 动态多播代理

一. 代理机制&#xff0c;代理也叫做委托&#xff0c;其作用就是提供一种消息机制。 发送方 &#xff0c;接收方 分别叫做 触发点和执行点。就是软件中的观察者模式的原理。 创建一个C Actor作为练习 二.单播代理 创建一个C Actor MyDeligateActor作为练习 在MyDeligateAc…

Tuning Language Models by Proxy

1、写作动机&#xff1a; 调整大语言模型已经变得越来越耗资源&#xff0c;或者在模型权重是私有的情况下是不可能的。作者引入了代理微调&#xff0c;这是一种轻量级的解码时算法&#xff0c;它在黑盒 大语言模型 之上运行&#xff0c;以达到直接微调模型的结果&#xff0c;但…

Java项目:29 基于SpringBoot+thymeleaf实现的图书管理系统

作者主页&#xff1a;舒克日记 简介&#xff1a;Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 项目介绍 基于SpringBootthymeleaf实现的图书管理系统分为管理员、读者两个登录角色&#xff0c;一共是8个功能模块 管理员权限 图书管理&#xff1a; 添加图…

便携式森林消防灭火泵:森林安全的守护者

在自然环境中&#xff0c;森林是地球生态系统的重要组成部分&#xff0c;它们为我们提供氧气、净化空气、防止土壤侵蚀等重要功能。然而&#xff0c;当森林发生火灾时&#xff0c;它们也会成为我们的噩梦。火势蔓延迅速&#xff0c;难以控制&#xff0c;对森林和生态环境造成严…

java高级——反射

目录 反射概述反射的使用获取class对象的三种方式反射获取类的构造器1. 获取类中所有的构造器2. 获取单个构造器 反射获取构造器的作用反射获取成员变量反射变量赋值、取值获取类的成员方法反射对象类方法执行 反射简易框架案例案例需求实现步骤代码如下 反射概述 什么是反射 反…

SpringCloud微服务-Eureka注册中心

Eureka注册中心 文章目录 Eureka注册中心前言1、Eureka的作用2、搭建EurekaServer3、服务注册4、启动多个实例5、服务拉取 -实现负载均衡 前言 在服务调用时产生的问题&#xff1a; //2. 利用RestTemplate发起HTTP请求&#xff0c;查询user String url "http://localho…

FinalShell控制远程Linux服务器(首先得自己已购买好Linux服务器并安装了对应的系统,这里是安装的centos系统)

1、电脑上需要安装FinalShell软件 可以到分享的链接中下载软件&#xff0c;然后双击点击下一步安装即可 链接&#xff1a;https://share.weiyun.com/Y6TrdDHp 密码&#xff1a;gbvyg62、建立远程连接 3、输入连接信息 4、显示连接主机成功&#xff0c;表示远程进入 5、输入…