C++ list详解以及模拟实现

目录

1.list的使用

1.1list的定义

1.2list的使用

1.3list iterator使用

1.4list capacity

1.5list element access

1.6list增删查改

2.list迭代器失效问题

 3.list的模拟实现


1.list的使用

1.1list的定义

1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。

2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。

3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。

4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。

5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素)

1.2list的使用

构造函数结构说明
list(size_type n,const value_type& val=value_type())构造的list中包含n个值为val的元素
list()构造空的list

list(const list&x)

拷贝构造函数
list(InputIterator first,InputIterator last)用[first,last)区间中的元素构造list

1.3list iterator使用

函数声明接口声明
begin+end返回第一个元素的迭代器+返回最后一个元素的下一个位置的迭代器
rbegin+rend返回第一个元素reverse_iterator,即end的位置+返回最后一个元素下一个位置的reverse_iterator,即begin的位置

需要注意的是:

1.begin与end为正向迭代器,对迭代器执行++操作,迭代器向后移动

2.rbegin(end)与rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动

1.4list capacity

函数声明接口说明
empty检查list是否为空,为空返回true,不为空返回false
size返回list中有效节点的个数

1.5list element access

函数声明接口说明
front返回list的第一个节点中值的引用
back返回list的最后一个节点中值的引用

1.6list增删查改

函数声明接口声明
push_front在list首元素前插入值为val的元素

pop_front

删除list中第一个元素
push_back

在list尾部插入值为val的元素

pop_back删除list中最后一个元素
insert在list position位置中插入值为val的元素
erase删除list position位置的元素
swap交换两个list中的元素
clear清空list中的有效元素

2.list迭代器失效问题

与string和vector相似,list的迭代器也会出现失效的问题

#include<iostream>
#include<list>
using namespace std;
int main()
{int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };list<int> l(array, array + sizeof(array) / sizeof(array[0]));auto it = l.begin();while (it != l.end()){l.erase(it);++it;}
}

下面是正确的使用方式,每次都更正一下迭代器it指向的结点位置。

void TestListIterator()
{
int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
list<int> l(array, array+sizeof(array)/sizeof(array[0]));
auto it = l.begin();
while (it != l.end())
{
l.erase(it++); // it = l.erase(it);
}
}

 3.list的模拟实现

#pragma once
#include<assert.h>namespace mylist
{template<class T>struct ListNode{ListNode<T>* _next;ListNode<T>* _prev;T _data;ListNode(const T& x = T()):_next(nullptr),_prev(nullptr),_data(x){}};template<class T>struct __list_iterator{typedef ListNode<T> Node;typedef __list_iterator<T> self;Node* _node;__list_iterator(Node* x):_node(x){}// ++itself& operator++(){_node = _node->_next;return *this;}// it++self operator++(int){//__list_iterator<T> tmp(*this);self tmp(*this);_node = _node->_next;return tmp;}self& operator--(){_node = _node->_prev;return *this;}self operator--(int);T& operator*(){return _node->_data;}bool operator!=(const self& s){return _node != s._node;}bool operator==(const self& s);};template<class T>class list{typedef ListNode<T> Node;public:typedef __list_iterator<T> iterator;iterator begin(){//return iterator(_head->_next);return _head->_next;}iterator end(){return _head;}void empty_init(){_head = new Node;_head->_next = _head;_head->_prev = _head;}list(){empty_init();}void clear(){iterator it = begin();while (it != end()){it = erase(it);}}~list(){clear();delete _head;_head = nullptr;}//list(const list<T>& lt)list(list<T>& lt){empty_init();for (const auto& e : lt){push_back(e);}}// lt1 = lt2;// list<T>& operator=(const list<T>& lt)/*list<T>& operator=(list<T>& lt){if (this != &lt){clear();for (const auto& e : lt){push_back(e);}}return *this;}*/void swap(list<T>& tmp){std::swap(_head, tmp._head);}//list& operator=(list lt)list<T>& operator=(list<T> lt){swap(lt);return *this;}void push_back(const T& x){/*Node* newnode = new Node(x);Node* tail = _head->_prev;tail->_next = newnode;newnode->_prev = tail;newnode->_next = _head;_head->_prev = newnode;*/insert(end(), x);}void push_front(const T& x){insert(begin(), x);}void pop_back(){erase(--end());}void pop_front(){erase(begin());}// vector insert会导致迭代器失效// list会不会?不会iterator insert(iterator pos, const T& x){Node* cur = pos._node;Node* prev = cur->_prev;Node* newnode = new Node(x);// prev newnode curprev->_next = newnode;newnode->_prev = prev;newnode->_next = cur;cur->_prev = newnode;//return iterator(newnode);return newnode;}iterator erase(iterator pos){assert(pos != end());Node* cur = pos._node;Node* prev = cur->_prev;Node* next = cur->_next;prev->_next = next;next->_prev = prev;delete cur;return next;}private:Node* _head;};void test_list1(){list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);list<int>::iterator it = lt.begin();while (it != lt.end()){//*it += 10;cout << *it << " ";++it;}cout << endl;for (auto e : lt){cout << e << " ";}cout << endl;}void test_list2(){list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);for (auto e : lt){cout << e << " ";}cout << endl;lt.push_back(5);lt.push_front(0);for (auto e : lt){cout << e << " ";}cout << endl;lt.pop_back();lt.pop_front();for (auto e : lt){cout << e << " ";}cout << endl;lt.clear();for (auto e : lt){cout << e << " ";}cout << endl;lt.push_back(10);lt.push_back(20);for (auto e : lt){cout << e << " ";}cout << endl;}void test_list3(){list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);for (auto e : lt){cout << e << " ";}cout << endl;list<int> copy(lt);for (auto e : copy){cout << e << " ";}cout << endl;list<int> lt1;lt1.push_back(10);lt1.push_back(20);lt1.push_back(30);lt1.push_back(40);lt = lt1;for (auto e : copy){cout << e << " ";}cout << endl;}
}

 4.list和vector的对比

vectorlist
底层结构动态顺序表,一段连续空间带头结点的双向循环链表
随机访问支持随机访问,访问某个元素效率O(1)不支持随机访问,访问某个元素效率O(N)
插入和删除任意位置插入和删除效率低,需要搬移元素时间复杂度为O(N),插入时有可能需要增容,增容:开辟新空间,拷贝元素,释放旧空间,会导致效率降低,任意位置插入和删除效率高,不需要搬移元素,时间复杂度为O(1);
空间利用率底层为连续空间,不容易造成内存碎片,空间利用率高,缓存利用率高底层节点动态开辟,小节点容易造成内存碎片,空间利用率低,缓存利用率低
迭代器原生指针对原生指针(节点指针)进行封装
迭代器失效在插入元素时,要给所有的迭代器重新赋值,因为插入元素有可能会导致重新扩容,致使原来迭代器失效,删除时,当前迭代器需要重新赋值否则会失效插入元素不会导致迭代器失效,删除元素时,只会导致当前迭代器失效,其他迭代器不受影响
使用场景需要高效存储,支持随机访问,不关心插入删除效率大量插入和删除操作,不关心随机访问

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2812293.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

探索便捷办公新选择:ONLYOFFICE 桌面编辑器

目录 引言 1. ONLYOFFICE 桌面编辑器简介 2. 功能特点 2.1 多格式支持 2.2 实时协作编辑 2.3 兼容性与格式保持 2.4 丰富的编辑功能 3. 使用方法 3.1 下载安装 3.2 打开文档 3.3 编辑文档 3.4 保存和共享 4. 注意事项 4.1 版本更新 4.2 网络连接 4.3 安全性 5.…

matlab 方向向量约束的PCA快速粗配准

目录 一、算法原理二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的GPT爬虫。 一、算法原理 该方法由本人原创,目前尚未见有相关论文用到。具体原理看代码即可。 二、代码实现 clc;clear; %% ------…

rtthread stm32h743的使用(一)新工程建立

我们要在rtthread studio 开发环境中建立stm32h743xih6芯片的工程。我们使用一块stm32h743及fpga的核心板完成相关实验&#xff0c;核心板如图&#xff1a; 1.打开rtthread studio填写芯片型号及调试口&#xff0c;我们的调试串口为USART1_PA9,PA10。 2.编译新工程并且下载 …

C++:类与对象(2)

创作不易&#xff0c;感谢三连&#xff01; 一、六大默认成员函数 C为了弥补C语言的不足&#xff0c;设置了6个默认成员函数 二、构造函数 2.1 概念 在我们学习数据结构的时候&#xff0c;我们总是要在使用一个对象前进行初始化&#xff0c;这似乎已经成为了一件无法改变的…

ConvNeXt V2:用MAE训练CNN

论文名称&#xff1a;ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders 发表时间&#xff1a;CVPR2023 code链接&#xff1a;代码 作者及组织: Sanghyun Woo&#xff0c;Shoubhik Debnath来自KAIST和Meta AI。 前言 ConvNextV2是借助MAE的思想来训练…

JSP实现数据传递与保存(一)

一、Web开发步骤 1.1两类模式 后端——————前端 先有前端&#xff0c;前端用的时候直接调用 后端已实现注册接口&#xff0c;接口名为doRegister.jsp 前端此时&#xff1a; 前端的form表单中的action提交地址就只能填doRegister.jsp&#xff0c;即&#xff1a; <f…

C++面试宝典第32题:零钱兑换

题目 给定不同面额的硬币coins和一个总金额amount,编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,则返回-1。说明:你可以认为每种硬币的数量是无限的。 示例1: 输入:coins = [1, 2, 5], amount = 11 输出:3 解释:11 = …

如何学习Arduino单片机

&#xff08;本文为简单介绍&#xff0c;内容源于网络&#xff09; 学习Arduino相关的网址和开源社区&#xff1a; Arduino官方文档: Arduino - HomeArduino Forum: Arduino ForumArduino Playground: Arduino Playground - HomePageGitHub: GitHub: Let’s build from here …

【Linux C | 网络编程】套接字选项、getsockopt、setsockopt详解及C语言例子

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…

浅谈门级驱动电压对IGBT性能的影响

绝缘门极双极型晶体管&#xff08;IGBT&#xff09;是复合了功率场效应管和电力晶体管的优点而产生的一种新型复合器件&#xff0c;具有输入阻抗高、工作速度快、热稳定性好、驱动电路简单、饱和压降低、耐压高电流大等优点&#xff0c;因此现今应用相当广泛。但是IGBT良好特性…

Programming Abstractions in C阅读笔记:p303-p305

《Programming Abstractions in C》学习第74天&#xff0c;p303-p305总结&#xff0c;总计3页。 一、技术总结 1.时间复杂度分类(complexity classes) ClassNotationExampleconstantO(1)Returning the first element in an arraylogarithmicO(logN)Binary search in a sorte…

使用Node.js开发一个文件上传功能

在现代 Web 应用程序开发中&#xff0c;文件上传是一个非常常见且重要的功能。今天我们将通过 Node.js 来开发一个简单而强大的文件上传功能。使用 Node.js 来处理文件上传可以带来许多好处&#xff0c;包括简单的代码实现、高效的性能和灵活的配置选项。 首先&#xff0c;我们…

【软件测试】--功能测试3

一、用例执行 说明&#xff1a;执行结果与用例的期望结果不一致&#xff08;含义&#xff09;&#xff0c;为缺陷。 执行失败的用例 提示&#xff1a;用例执行不通过为缺陷&#xff0c;需要进行缺陷管理 二、缺陷 2.1 定义 软件中存在的各种问题&#xff0c;都为缺陷&#…

第 1 章 微信小程序与云开发从入门到实践从零开始做小程序——开发认识微信小程序

小北的参考工具书 小程序开发的图书并不少&#xff0c;这本书仍然值得你拥有&#xff01; 首先&#xff0c;这是一本全栈小程序开发教程&#xff0c;循序渐进&#xff0c;由浅入深&#xff0c;介绍了小程序开发你想了解的方方面面&#xff0c;包括近其小程序开发的各种新技术应…

【HarmonyOS】鸿蒙开发之Stage模型-应用配置文件——第4.2章

Stage模型-应用配置文件 AppScope -> app.json5&#xff1a;应用的全局配置信息entry&#xff1a;OpenHarmony工程模块&#xff0c;编译构建生成一个HAP包 build&#xff1a;用于存放OpenHarmony编译生成的hap包src -> main -> ets&#xff1a;用于存放ArkTS源码src …

docker 常用指令(启动,关闭,查看运行状态)

文章目录 docker 常用指令启动 docker关闭 docker查看 docker的运行状态 docker 常用指令 启动 docker systemctl start docker关闭 docker systemctl stop docker查看 docker的运行状态 systemctl status docker如下图所示&#xff1a; 表示docker正在运行中

Stable Diffusion 绘画入门教程(webui)-ControlNet(NormalMap)

法线贴图NormalMap可以把参考图的光影分布关系,法线贴图可以实现在不改变物体真实结构的基础上也能反映光影分布的效果&#xff0c;被广泛应用在 CG 动画渲染和游戏制作等领域 简单来讲可以参考原图的光影明暗关系并还原原图姿态&#xff0c;如下图&#xff1a;左边为原图&…

opencv判断二值的情况

目的 先说说理论&#xff1a; 什么叫图像的二值化&#xff1f;二值化就是让图像的像素点矩阵中的每个像素点的灰度值为0&#xff08;黑色&#xff09;或者255&#xff08;白色&#xff09;&#xff0c;也就是让整个图像呈现只有黑和白的效果。在灰度化的图像中灰度值的范围为0…

IDEA的LeetCode插件的设置

一、下载插件 选择点击File->Setting->Plugins&#xff1a;搜索LeetCode 二、打开这个插件 选择View —>Tool Windows—>leetcode 三、登陆自己的账号 关于下面几个参数的定义&#xff0c;官方给的是&#xff1a; Custom code template: 开启使用自定义模板&…

小程序应用、页面、组件生命周期

引言 微信小程序生命周期是指在小程序运行过程中&#xff0c;不同阶段触发的一系列事件和函数。这一概念对于理解小程序的整体架构和开发流程非常重要。本文将介绍小程序生命周期的概念以及在不同阶段触发的关键事件&#xff0c;帮助开发者更好地理解和利用小程序的生命周期。 …