轻量级模型,重量级性能,TinyLlama、LiteLlama小模型火起来了,针对特定领域较小的语言模型是否与较大的模型同样有效?

轻量级模型,重量级性能,TinyLlama、LiteLlama小模型火起来了,针对特定领域较小的语言模型是否与较大的模型同样有效?

在这里插入图片描述

当大家都在研究大模型(LLM)参数规模达到百亿甚至千亿级别的同时,小巧且兼具高性能的小模型开始受到研究者的关注。

小模型在边缘设备上有着广泛的应用,如智能手机、物联网设备和嵌入式系统,这些边缘设备通常具有有限的计算能力和存储空间,它们无法有效地运行大型语言模型。因此,深入探究小型模型显得尤为重要。

在这里插入图片描述

接下来我们要介绍的这两项研究,可能满足你对小模型的需求。

TinyLlama-1.1B

来自新加坡科技设计大学(SUTD)的研究者近日推出了 TinyLlama,该语言模型的参数量为 11 亿,在大约 3 万亿个 token 上预训练而成。

在这里插入图片描述

论文地址:https://arxiv.org/pdf/2401.02385.pdf
项目地址:https://github.com/jzhang38/TinyLlama/blob/main/README_zh-CN.md
TinyLlama 以 Llama 2 架构和分词器(tokenizer)为基础,这意味着 TinyLlama 可以在许多基于 Llama 的开源项目中即插即用。此外,TinyLlama 只有 11 亿的参数,体积小巧,适用于需要限制计算和内存占用的多种应用。

该研究表示仅需 16 块 A100-40G 的 GPU,便可在 90 天内完成 TinyLlama 的训练。
在这里插入图片描述

该项目从上线开始,持续受到关注,目前星标量达到 4.7K。
在这里插入图片描述
TinyLlama 模型架构详细信息如下所示:
在这里插入图片描述
训练细节如下:
在这里插入图片描述
研究者表示,这项研究旨在挖掘使用较大数据集训练较小模型的潜力。他们重点探究在用远大于扩展定律(scaling law)建议的 token 数量进行训练时,较小模型的行为表现。

具体来说,该研究使用大约 3 万亿个 token 训练具有 1.1B 个参数的 Transformer (仅解码器)模型。据了解,这是第一次尝试使用如此大量的数据来训练具有 1B 参数的模型。

尽管规模相对较小,但 TinyLlama 在一系列下游任务中表现相当出色,它的性能显著优于同等大小的现有开源语言模型。具体来说,TinyLlama 在各种下游任务中都超越了 OPT-1.3B 和 Pythia1.4B 。

此外,TinyLlama 还用到了各种优化方法,如 flash attention 2、FSDP( Fully Sharded Data Parallel )、 xFormers 等。

在这些技术的加持下,TinyLlama 训练吞吐量达到了每 A100-40G GPU 每秒 24000 个 token。例如,TinyLlama-1.1B 模型对于 300B token 仅需要 3,456 A100 GPU 小时,而 Pythia 为 4,830 小时,MPT 为 7,920 小时。这显示了该研究优化的有效性以及在大规模模型训练中节省大量时间和资源的潜力。

TinyLlama 实现了 24k tokens / 秒 / A100 的训练速度,这个速度好比用户可以在 8 个 A100 上用 32 小时训练一个具有 11 亿参数、220 亿 token 的 chinchilla-optimial 的模型。同时,这些优化也大大减少了显存占用,用户可以把 11 亿参数的模型塞入 40GB 的 GPU 里面还能同时维持 16k tokens 的 per-gpu batch size。只需要把 batch size 改小一点, 你就可以在 RTX 3090/4090 上面训练 TinyLlama。
在这里插入图片描述
在这里插入图片描述

实验中,该研究主要关注具有纯解码器架构的语言模型,包含大约 10 亿个参数。具体来说,该研究将 TinyLlama 与 OPT-1.3B、Pythia-1.0B 和 Pythia-1.4B 进行了比较。

TinyLlama 在常识推理任务上的性能如下所示,可以看出 TinyLlama 在许多任务上都优于基线,并获得了最高的平均分数。
在这里插入图片描述
此外,研究者在预训练期间跟踪了 TinyLlama 在常识推理基准上的准确率,如图 2 所示,TinyLlama 的性能随着计算资源的增加而提高,在大多数基准中超过了 Pythia-1.4B 的准确率。

在这里插入图片描述
表 3 表明,与现有模型相比,TinyLlama 表现出了更好的问题解决能力。
在这里插入图片描述
手快的网友已经开始整活了:运行效果出奇得好,在 GTX3060 上运行,能以 136 tok / 秒的速度运行。

在这里插入图片描述

「确实是快!」

在这里插入图片描述

小模型 LiteLlama

由于 TinyLlama 的发布,SLM(小型语言模型)开始引起广泛关注。德克萨斯工农大学的 Xiaotian Han 发布了 SLM-LiteLlama。它有 460M 参数,由 1T token 进行训练。这是对 Meta AI 的 LLaMa 2 的开源复刻版本,但模型规模显著缩小。
在这里插入图片描述
项目地址:https://huggingface.co/ahxt/LiteLlama-460M-1T

LiteLlama-460M-1T 在 RedPajama 数据集上进行训练,并使用 GPT2Tokenizer 对文本进行 token 化。作者在 MMLU 任务上对该模型进行评估,结果如下图所示,在参数量大幅减少的情况下,LiteLlama-460M-1T 仍能取得与其他模型相媲美或更好的成绩。

在这里插入图片描述
以下为该模型的性能表现,更详细内容请参阅:

https://huggingface.co/datasets/open-llm-leaderboard/details_ahxt__llama2_xs_460M_experimental

在这里插入图片描述
面对规模大幅缩小的 LiteLlama,有网友好奇,它是否能够在 4GB 的内存上运行。如果你也想知道,不如亲自试试看吧。


经过2023年的发展,大语言模型展示出了非常大的潜力,训练越来越大的模型成为有效性评估的一个关键指标,论文《A Comparative Analysis of Fine-Tuned LLMs and Few-Shot Learning of LLMs for Financial Sentiment Analysis》中,作者全面分析了微调大语言模型(llm)及其在金融情绪分析中的零样本和少样本的能力。

在这里插入图片描述

作者通过使用两种方法来探索金融情绪分析背景下的潜力和适用性:

在特定的领域(金融领域)的数据集上,使用小语言模型进行微调,作者测试了250M到3B参数各种模型
以gpt-3.5 turbo为重点的情境学习
作者还将结果与SOTA(最先进的)模型进行比较以评估其性能,我们看看小模型是否还同样有效。

论文证明了以下观点:

微调较小的llm可以达到与SOTA微调llm相当的性能。
零样本和少样本学习的的性能与经过微调的小型llm相当。
增加上下文学习中的样本数量并不一定会提高情感分析任务的性能。
微调较小的llm会降低成本和提高计算效率。
作者专注于使用QLoRa (Quantized low - rank - adaptive)机制对FLAN-T5模型进行微调。使用财务特定数据集,研究了3种尺寸:Flan-T5 base (250M), Flan-T5 large (780M)和Flan-T5-xl (3B参数)。

论文概述
论文首先总结了特定于金融领域的SOTA模型:

FinBERT:使用总计4.9B Token组的金融通信语料库进行微调的BERT。
bloomberg ggpt:这是一个包含50B个参数的闭源模型,专门针对各种金融数据进行训练。它在情感分析中表现出良好的性能。
使用LLama-7B对FinGPT进行微调。该模型使用更少的计算资源实现了与bloomberg ggpt相当的性能。
ChatGPT这样的llm也可以使用零样本学习。但是他们在少样本学习中表现并不理想
作者使用了以下模型:

1、没有进行任何微调:Flan-T5 base (250M), Flan-T5 large (780M), Flan-T5-xl (3B参数),ChatGPT (gpt-3.5 turbo)。目标是研究模型的大小对零样本和少样本学习的影响。

2、微调llm:具有3个尺寸的相同型号的Flan-T5已经进行了微调。

数据集
使用了Twitter财经新闻(Twitter Train),包括与金融主题相关的推文,可通过HuggingFace访问。它包含9540个样本。

TFSN: 2390个带有注释的财经相关推文语料库样本。

FPB: 4845篇金融新闻文章样本,由16位领域专家注释。

GPU资源
为了对3个模型进行微调,作者使用了A100 GPU,每个模型的总训练时间如下:基本模型28分钟,大模型54分钟,XL模型65分钟,所以说这个微调是非常节省资源的。

微调小型LLMs
结果显示了经过微调的小型llm优于大型llm的性能:
在这里插入图片描述
所有Fine-tuned-FLAN-T5的性能都优于FinBERT;Large (780M)和XL(3B) fine - tuning - flan - t5性能优于directive - lama- 7b;在TFSN数据集中,即使是基础(250M)微调的flan - t5也比使用ChatGPT (gpt-3.5 turbo)的k-shot上下文学习表现更好。

少样本学习
以下是0 -shot和k-shot学习的结果(k= 1,5和10):
在这里插入图片描述

在TFSN数据集上,零样本和少样本学习的表现明显低于所有其他微调模型。(除了XL,表现比FinBert稍好)

但是在FPB数据集中,与ChatGPT相比,Large和XL Flan-T5零样本和少样本学习表现出较强的性能。

样本的增加使得基本型Flan-T5的性能略有提升。但在Large和XL fall - t5中,这导致精度下降。这是因为冗长的上下文窗口可能会导致LLM误入歧途。

所以作者建议,当k-shot增加时可以使用语义相似检索或思维链(CoT)或线索和推理提示(CARP)方法来解决性能下降的问题。

总结
可以看到,针对特定的领域,微调小模型还是能过够得到很好的效果,这在对于我们实际应用是是非常有帮助的,不仅可以节省成本,还可以节省我们的训练时间,可以让我们进行快速的版本迭代。

论文地址:

https://arxiv.org/pdf/2312.08725.pdf


参考链接:

https://twitter.com/_akhaliq/status/1744009616562819526

https://twitter.com/XiaotianHan1/status/1743824496916656275

https://twitter.com/abacaj/status/1743303507594097136

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2809993.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

多目标追踪概述

1. 目标跟踪分类 单目标跟踪:在视频的初始帧画面上框出单个目标,预测后续帧中该目标的大小与位置多目标跟踪:追踪多个目标的大小和位置,且每一帧中目标的数量和位置都可能变化 2. 多目标跟踪目前的主要问题 形态变化&#xff1a…

Android 获取USB相机支持的分辨率有多少

直接上代码 private fun getCamera() {// 获取系统相机服务val cameraManager requireContext().getSystemService(Context.CAMERA_SERVICE) as? CameraManagerif (cameraManager ! null) {// 在这里进行相机管理器的操作// 获取相机设备的 ID(这里假设使用第一个相…

小封装高稳定性振荡器新系列(2.0 x 1.6 mm) 用于光学应用

小封装高稳定性振荡器新系列(2.0 x 1.6 mm) 用于光学应用,兼容OIF标准 Sg2016egn / sg2016vgn, sg2016ehn / sg2016vhn 来自光模块市场的需求爱普生提供SG2016系列解决方案SG2016系列:高稳定性,低抖动晶体振荡器规格尺寸,框图,引…

Java零基础 - 关键字 instanceof

哈喽,各位小伙伴们,你们好呀,我是喵手。 今天我要给大家分享一些自己日常学习到的一些知识点,并以文字的形式跟大家一起交流,互相学习,一个人虽可以走的更快,但一群人可以走的更远。 我是一名后…

无限创意之旅:深度挖掘Sora AI视频模型的可能性【文章底部添加可得内推码汇总表】

目录 引言 第一部分:Sora AI视频模型的特性 第二部分:Sora在创意领域的应用 第三部分:Sora对影视产业的影响 【文章底部添加可得内推码汇总表】 引言 21世纪,随着AI人工智能的迅猛发展,AI视频模型正成为数字创意领…

17.材质和外观

1.图形学中的材质 在图形学中,材质(Material)是用来描述物体外观和表面特性的属性集合。它包含了控制光的反射、折射、吸收以及其他光学效果的信息,从而决定了物体在渲染过程中的外观。 渲染方程中那一项和材质有关? …

HSE化工应急安全生产管理平台:信息化、流程化的安全管理新模式

随着化工行业的快速发展,安全生产管理日益成为企业发展的关键所在。在这一背景下,HSE化工应急安全生产管理平台应运而生,以信息平台为载体,数据驱动、风险管理为中心,致力于实现安全生产的动态、实时和智能化管理。本文…

【工具分享】批量查找文件并移动复制,咕嘎批量文件清单快速查找搜索文件,比bat批量查找文件并复制更简单一些

在工作中,像电商或者照相馆以及政府工程的工作人员,整理文件时,我们经常遇到批量查找部分文件,比如在10万个文件内查找5000个文件,把5000个文件分离出来,存在另外一个地方 如果是在电脑中挨个搜那要搜很久&…

客户至上!CRM系统如何助力企业提升客户满意度?

产品复购率是企业经营中的重要指标。要提升产品的复购率,除了产品质量需要过硬,客户服务的质量和效率也是重要影响因素,而CRM管理系统能够帮助达成这一点。 我们将通过这篇文章讲解CRM系统为何能提高客户满意度。 1.协助掌握客户的需要 企业…

【小尘送书-第十四期】《高效使用Redis:一书学透数据存储与高可用集群》

大家好,我是小尘,欢迎你的关注!大家可以一起交流学习!欢迎大家在CSDN后台私信我!一起讨论学习,讨论如何找到满意的工作! 👨‍💻博主主页:小尘要自信 &#x1…

JAVA集合进阶(Set、Map集合)

一、Set系列集合 1.1 认识Set集合的特点 Set集合是属于Collection体系下的另一个分支&#xff0c;它的特点如下图所示 下面我们用代码简单演示一下&#xff0c;每一种Set集合的特点。 //Set<Integer> set new HashSet<>(); //无序、无索引、不重复 //Set<…

云HIS支持连锁集团化管理,1+N模式,支撑运营,管理,决策多位一体

目录 云HIS系统特色 使用简易化 连锁集团化 可扩展化 系统描述 云HIS系统优势 &#xff08;1&#xff09;客户/用户角度 &#xff08;2&#xff09;开发/运维角度 &#xff08;3&#xff09;成功应用案例 HIS分系统&#xff08;HIS子系统&#xff09; 1、医疗业务子…

el-submenu is-opened 展开/闭合;el-submenu is-opened保持一个子菜单的展开控制

写了个mes系统目录 点击子菜单展开后&#xff0c;上一级菜单没有默认关闭。主流后台管理系统大部分都是保持一个子菜单关闭状态、 问度娘无果后&#xff0c;查询官网&#xff0c;一个属性搞定。 unique-opened 是否只保持一个子菜单的展开 加在 <el-menu 组件上即可 完整代…

Excel工作表控件实现滚动按钮效果

实例需求&#xff1a;工作表中有多个Button控件&#xff08;工作表Form控件&#xff09;和一个ScrollBar控件&#xff08;工作表ActiveX控件&#xff0c;名称为ScrollBar2&#xff09;&#xff0c;需要实现如下图所示效果。点击ScrollBar控件实现按钮的滚动效果&#xff0c;实际…

SpringBoot自带的tomcat的最大连接数和最大的并发数

先说结果&#xff1a;springboot自带的tomcat的最大并发数是200&#xff0c; 最大连接数是&#xff1a;max-connectionsaccept-count的值 再说一下和连接数相关的几个配置&#xff1a; 以下都是默认值&#xff1a; server.tomcat.threads.min-spare10 server.tomcat.threa…

8.网络游戏逆向分析与漏洞攻防-游戏网络架构逆向分析-游戏底层功能对接类GameProc的实现

内容参考于&#xff1a;易道云信息技术研究院VIP课 上一个内容&#xff1a;通过逆向分析确定游戏明文接收数据过程 码云地址&#xff08;master 分支&#xff09;&#xff1a;https://gitee.com/dye_your_fingers/titan 码云版本号&#xff1a;bcf7559184863febdcad819e48aaa…

科技云报道:黑马Groq单挑英伟达,AI芯片要变天?

科技云报道原创。 近一周来&#xff0c;大模型领域重磅产品接连推出&#xff1a;OpenAI发布“文字生视频”大模型Sora&#xff1b;Meta发布视频预测大模型 V-JEPA&#xff1b;谷歌发布大模型 Gemini 1.5 Pro&#xff0c;更毫无预兆地发布了开源模型Gemma… 难怪网友们感叹&am…

11:日志分析系统ELK|Elasticsearch|kibana

日志分析系统ELK&#xff5c;Elasticsearch&#xff5c;kibana 日志分析系统ELKELK概述Elasticsearch安装Elasticsearch部署Elasticsearch集群Elasticsearch插件 熟悉Elasticsearch的API调用_cat API创建 tedu 索引使用 PUT 方式增加数据查询数据修改数据删除数据 KibanaKibana…

C语言第三十一弹---自定义类型:结构体(下)

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】 目录 1、结构体内存对齐 1.1、为什么存在内存对齐? 1.2、修改默认对齐数 2、结构体传参 3、结构体实现位段 3.1、什么是位段 3.2、位段的内存分配 3.3、…

端口映射的软件有哪些?

端口映射软件是一种实用工具&#xff0c;能够帮助用户在网络中实现远程通信&#xff0c;解决不同地区电脑与电脑、设备与设备、电脑与设备之间的信息传输问题。其中&#xff0c;【天联】组网天联是一款功能强大的端口映射软件&#xff0c;它通过在全国各主要节点部署加速服务器…