C语言第三十一弹---自定义类型:结构体(下)

个人主页: 熬夜学编程的小林

💗系列专栏: 【C语言详解】 【数据结构详解】

目录

1、结构体内存对齐

1.1、为什么存在内存对齐?

1.2、修改默认对齐数

2、结构体传参

3、结构体实现位段

3.1、什么是位段

3.2、位段的内存分配

3.3、位段的跨平台问题

3.4、位段的应用

3.5、位段使用的注意事项

总结


上一弹我们讲解了结构体内存对齐的规则,那为什么我们需要内存对齐呢?

我们通过这一弹来进行讲解。

1、结构体内存对齐

1.1、为什么存在内存对齐?

大部分的参考资料都是这样说的:

1. 平台原因 (移植原因):

不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。

2. 性能原因:

数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对齐成8的倍数,那么就可以用⼀个内存操作来读或者写值了。否则,我们可能需要执行两次内存访问,因为对象可能被分放在两个8字节内存块中。

总体来说:结构体的内存对齐是拿空间来换取时间的做法。

那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:

让占用空间小的成员尽量集中在⼀起

//例如:
struct S1{char c1;int i;char c2;};struct S2{char c1;char c2;int i;};

S1 和 S2 类型的成员⼀模⼀样,但是 S1 和 S2 所占空间的大小有了⼀些区别。

很显然,根据上一弹讲解的内存对齐规则,S1所占的空间更大。

1.2、修改默认对齐数

#pragma 这个预处理指令,可以改变编译器的默认对齐数。

#include <stdio.h>
#pragma pack(1)//设置默认对齐数为1
struct S
{char c1;int i;char c2;
};
#pragma pack()//取消设置的对齐数,还原为默认
int main()
{//输出的结果是什么?printf("%d\n", sizeof(struct S));return 0;
}

根据上一弹结构体内存对齐规则,可知该结构体的大小如上图,即6字节。

结构体在对齐方式不合适的时候,我们可以自己更改默认对齐数。

2、结构体传参

struct S
{int data[1000];int num;
};
struct S s = {{1,2,3,4}, 1000};
//结构体传参
void print1(struct S s)
{printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{printf("%d\n", ps->num);
}
int main()
{print1(s); //传结构体print2(&s); //传地址return 0;
}

上面的 print1 和 print2 函数哪个好些?

答案是:首选print2函数。

原因:

函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。

如果传递⼀个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降。

结论:

结构体传参的时候,要传结构体的地址。

3、结构体实现位段

结构体讲完就得讲讲结构体实现 位段 的能力。

3.1、什么是位段

位段,C语言允许在一个结构体中以位为单位来指定其成员所占内存长度,这种以位为单位的成员称为“位段”或称“位域”( bit field) 。利用位段能够用较少的位数存储数据。

位段的声明和结构是类似的,有两个不同:

1. 位段的成员必须是 int、unsigned int 或signed int ,在C99中位段成员的类型也可以

选择其他类型。

2. 位段的成员名后边有⼀个冒号和⼀个数字。

比如:

struct A
{int _a:2;int _b:5;int _c:10;int _d:30;
};

A就是⼀个位段类型。

那里面的冒号和数字又表示什么呢?

首先我们要明白位段中的这个“位”字其实指的是二进制位。
我们知道一个二进制位就是1个比特位。
所以,A中int _a:2; 其实表示的就是_a的大小是2bit;
同理:
_b的大小是5bit
_c的大小是10bit
_d的大小是30bit

知道各自占用的内存空间之后,是不是将内存空间相加就是该结构体的真实内存大小呢?

2+5+10+30=47bit  因为一字节等于8bit,47bit接近6字节,是不是结构体空间就是6字节?我们通过VS测试来揭晓一下答案。

printf("%d\n", sizeof(struct A));

此处uu们肯定疑惑,刚刚算出来还不到6字节,为什么答案就是8字节呢?接下来我们来进行深入讲解。

3.2、位段的内存分配

从上面的讲解我们知道:

1. 位段的成员可以是 int、unsigned int、signed int 或者是 char 等类型

那位段所需的空间是如何分配的呢?

2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。

此句话该怎么理解呢?

就是说,如果位段的成员全部是整型的(位段成员一般都是同类型的),那上去就先给这个位段开辟4个字节的空间,如果不够用,放不下所有的成员,那就再开辟4个字节的空间,还不够用,继续开辟,以此类推。如果成员全部是char类型的,那就一次开辟1个字节的空间,直至放得下所有成员。

注意:

3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。

我们知道这些位段的规则之后,那么上面的struct A的内存大小是如何计算出来的呢?

根据上述规则可知,位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的,此处为int类型字段,因此需要先开辟4字节空间,但是此处是小端存储还是大端存储呢?我们前面讲解的VS中整数在内存中的存储可知,VS采用小端存储,那么此处我们也采用小端存储来计算大小,先占用2bit空间,如上图绿色方框再占用5bit空间,如上图橙色方框,再占用10bit空间,但是此处第一个字节只剩1bit空间了,空间不够,需要占用新的空间,如上图蓝色方框,但是,最后占用30bit,同理空间不够需要占用新的空间,先占用8bit,但是此处已经没有空间了,所以需要再创建4字节空间,然后按照上图存放在内存空间中,如上图紫色方框。因此该结构体内存大小为8字节。

我们虽然根据上面的规则和VS整数在内存中存储得出上面结果,但是就一定是这样?下面我们再用一个例子证明一下。

//一个例子
struct S
{char a : 3;char b : 4;char c : 5;char d : 4;
};
int main()
{struct S s = { 0 };s.a = 10;s.b = 12;s.c = 3;s.d = 4;//空间是如何开辟的?return 0;
}

根据上述结构体字段的规则,此处内存的占用如上图。

此时还是证明不了内存中真实如何存储,此时我们可以赋值一些值进行验证。

现在通过调试看看结构体s在内存中是如何存储的。

根据VS编译器的调试可知,结构体位段在VS中是按照小端进行存储的,但是不是所有编译器都是这样,因此用到其他编译器时需要自行证明。

3.3、位段的跨平台问题

1. int 位段被当成有符号数还是无符号数是不确定的。

2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会出问题。

3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。

4. 当⼀个结构包含两个位段,第⼆个位段成员比较大,无法容纳于第⼀个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的。

总结:

跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

3.4、位段的应用

下图是网络协议中,IP数据报的格式,我们可以看到其中很多的属性只需要几个bit位就能描述,这里使用位段,能够实现想要的效果,也节省了空间,这样网络传输的数据报大小也会较小⼀些,对网络的畅通是有帮助的。

3.5、位段使用的注意事项

位段的几个成员共有同⼀个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位置处是没有地址的。内存中每个字节分配⼀个地址,⼀个字节内部的bit位是没有地址的。

所以不能对位段的成员使用&操作符,这样就不能使用scanf直接给位段的成员输入值,只能是先输入放在⼀个变量中,然后赋值给位段的成员。

struct A
{int _a : 2;int _b : 5;int _c : 10;int _d : 30;
};
int main()
{struct A sa = {0};scanf("%d", &sa._b);//这是错误的//正确的⽰范int b = 0;scanf("%d", &b);sa._b = b;return 0;
}

总结


本篇博客就结束啦,谢谢大家的观看,如果公主少年们有好的建议可以留言喔,谢谢大家啦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2809965.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

端口映射的软件有哪些?

端口映射软件是一种实用工具&#xff0c;能够帮助用户在网络中实现远程通信&#xff0c;解决不同地区电脑与电脑、设备与设备、电脑与设备之间的信息传输问题。其中&#xff0c;【天联】组网天联是一款功能强大的端口映射软件&#xff0c;它通过在全国各主要节点部署加速服务器…

KubeSphere实战

我是南城余&#xff01;阿里云开发者平台专家博士证书获得者&#xff01; 欢迎关注我的博客&#xff01;一同成长&#xff01; 一名从事运维开发的worker&#xff0c;记录分享学习。 专注于AI&#xff0c;运维开发&#xff0c;windows Linux 系统领域的分享&#xff01; 知…

数据可视化基础与应用-01-数据可视化概述

总结 本系列是数据可视化基础与应用的第02篇&#xff0c;主要介绍数据可视化概述&#xff0c;包括数据可视化的历史&#xff0c;原理&#xff0c;工具等。 认识大数据可视化 数据是什么 信息科学领域面临的一个巨大挑战是数据爆炸。据IDC Global DataSphere统计&#xff0c…

【Nuxt】在 Nuxt3 中使用 nuxt-icons 实现 icon svg 的动态变色效果

效果展示 nuxt-icons 安装 自己去看官网文档就行 nuxt-icons 配置 把 svg 放到 icons 目录下 使用 要想实现变色效果&#xff0c;需要我们把 svg 内部的需要动态变色的地方修改为 fill"currentColor" 才能实现动态修改颜色的效果 然后在代码中使用&#xff0c;使…

【机器人学导论笔记】三、操作臂正运动学

3.1 概述 操作臂正运动学研究操作臂的运动特性&#xff0c;主要涉及与运动有关的几何参数和时间参数。本章中&#xff0c;只研究静止状态下操作臂连杆的位置和姿态。 处理这些复杂的几何参数需要一些步骤&#xff1a;首先需要在操作臂的每个连杆上分别固接一个连杆坐标系&…

C++ Primer (第五版)第三章习题部分答案

在我自学C过程中&#xff0c;我选择了CPrimer这本书&#xff0c;并对部分代码习题进行了求解以及运行结果。接下来几个月我将为大家定时按章节更新习题答案与运行结果&#xff0c;运行环境&#xff08;Visual Studio Code&#xff0c;windows 11&#xff09;: 3.1.1.使用恰当的…

llm的inference(二)

文章目录 Tokenizer分词1.单词分词法2.单字符分词法3.子词分词法BPE(字节对编码&#xff0c;Byte Pair Encoding)WordPieceUnigram Language Model(ULM) embedding的本质推理时的一些指标参考链接 Tokenizer 在使用模型前&#xff0c;都需要将sequence过一遍Tokenizer&#xf…

【JavaScript 漫游】【020】DOM 常用知识点总结

文章简介 DOM 是 JavaScript 操作网页的接口&#xff0c;全称为文档对象模型&#xff08;Document Object Model&#xff09;。DOM 操作是 JavaScript 最常见的任务&#xff0c;离开了 DOM&#xff0c;JavaScript 就无法操作网页。 本篇文章为【JavaScript 漫游】专栏的第 02…

Mybatis总结--传参二

#叫做占位符 Mybatis是封装的JDBC 增强版 内部还是用的jdbc 每遇到一个#号 这里就会变为&#xff1f;占位符 一个#{}就是对应一个问号 一个占位符 用这个对象执行sql语句没有sql注入的风险 八、多个参数-使用Param 当 Dao 接口方法有多个参数&#xff0c;需要通过名称使…

Gemini 模型将被引入Performance Max

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

迅为LS2K0500开发板龙芯自主指令系统应用于互联网应用、打印终端、BMC 医疗、数控、通讯、交通等

CPU 迅为LS2K0500开发板采用龙芯2K0500处理器&#xff0c;基于龙芯自主指令系统 (LoongArch) 架构&#xff0c;片内集成64位LA264处理器核。实现ACPI、DVFS/DPM动态电源功耗管理等低功耗技术&#xff0c;支持多种电源级别和唤醒方式&#xff0c;可根据具体应用场景对芯片部分功…

Linux内核网络

文章目录 前言网络协议栈图解功能 发送Linux内核网络数据包图解流程 接收Linux内核网络数据包图解流程 最后 前言 你好&#xff0c;我是醉墨居士&#xff0c;因为Linux内核涉及的内容极多&#xff0c;我们初学者如果一上来就开始深挖细节&#xff0c;很有可能会在Linux内核代码…

时序预测 | Matlab实现基于GRNN广义回归神经网络的光伏功率预测模型

文章目录 效果一览文章概述源码设计参考资料效果一览 文章概述 1.时序预测 | Matlab实现基于GRNN广义回归神经网络的光伏功率预测模型 2.单变量时间序列预测; 3.多指标评价,评价指标包括:R2、MAE、MBE等,代码质量极高; 4.excel数据,方便替换,运行环境2020及以上。 广义回…

抖音短视频:表情包账号的魅力与运营之道以及制作与工具

在短视频的浪潮中&#xff0c;抖音以其独特的创意和趣味性成为了年轻人的最爱。其中&#xff0c;表情包账号更是凭借其生动、形象的表现方式&#xff0c;赢得了众多用户的青睐。本文将深入探讨抖音短视频表情包账号的魅力所在以及如何有效运营。 一、表情包账号的独特魅力 情…

Go的CSP并发模型实现M, P, G简介

GMP概念简介 G: goroutine&#xff08;协程&#xff0c;也叫用户态线程&#xff09; M: 工作线程(内核态线程) P: 上下文(也可以认为是cpu&#xff0c;逻辑cpu数量&#xff0c;可以在程序启动的时候设置这个数量&#xff0c;gomaxprocs函数设置) GMP 模型 在 Go 中&#xff…

深度神经网络中的计算和内存带宽

深度神经网络中的计算和内存带宽 文章目录 深度神经网络中的计算和内存带宽来源原理介绍分析1&#xff1a;线性层分析2&#xff1a;卷积层分析3&#xff1a;循环层总结 来源 相关知识来源于这里。 原理介绍 Memory bandwidth and data re-use in deep neural network computat…

Temu、亚马逊店铺如何快速得到好评?自养号测评下单的秘籍及必备条件。

Temu、亚马逊店铺如何快速得到好评?在这个竞争激烈的电商平台上&#xff0c;好评是店铺吸引顾客、建立良好声誉的关键。快速积累好评不仅能够提高商品的曝光度&#xff0c;也有助于吸引更多潜在顾客的关注。 然而&#xff0c;亚马逊不同于国内电商&#xff0c;对于操纵评论、…

动态规划的时间复杂度优化

作者推荐 视频算法专题 本文涉及知识点 动态规划汇总 优化动态规划的时间复杂度&#xff0c;主要有如下几种&#xff1a; 一&#xff0c;不同的状态表示。 比如&#xff1a;n个人&#xff0c;m顶帽子。 第一种方式&#xff1a;dp[i][mask] ,i表示前i个人已经选择帽子&…

Python in Excel的一些使用心得

获得Python in Excel的preview之后, 就在任意的Excel单元格里可以敲py(来写Python代码了。不过Python in Excel并没有什么专门的文档, 只有一些_Get Started_教程, 比如link 1, link 2, 剩下的就是pandas, matplotlib, seaborn等lib的文章&#xff0c;和Python in Excel并没有什…

linux---安使用nginx

目录 一、编译安装Nginx 1、关闭防火墙&#xff0c;将安装nginx所需要软件包传到/opt目录下 ​编辑2、安装依赖包 3、创建运行用户、组 4、编译安装nginx 5、创建软链接后直接nginx启动 ​编辑 6、创建nginx自启动文件 ​编辑6.1 重新加载配置、设置开机自启并开启服务…