【笔记】【电子科大 离散数学】 2.命题

文章目录

    • 数理逻辑
      • 定义
    • 命题
      • 定义
      • 不是命题的例子
    • 原子命题和复合命题
      • 定义
      • 约定
    • 命题联结词
      • 否定联结词
        • 定义
        • 例子
        • 真值表
      • 合取联结词
        • 定义
        • 例子
        • 真值表
      • 析取联结词
        • 定义
        • 例子
      • 蕴含联结词
        • 定义
        • 例子
        • 真值表
      • 等价联结词
        • 定义
        • 例子
        • 真值表
    • 命题符号化及其应用
      • 速查表格
      • 优先级
      • 复合命题符号化
      • 布尔检索演示
    • 命题变元
    • 命题公式
      • 公式的解释
      • 真值表
    • 命题公式的分类
    • 公式的逻辑等价
      • 定义
      • 定理
    • 命题公式的逻辑律、基本等价关系
      • 幂等律 (Idempotent Laws)
      • 交换律 (Commutative Laws)
      • 结合律 (Associative Laws)
      • 同一律 (Identity Laws)
      • 零律 (Domination Laws)
      • 分配律 (Distributive Laws)
      • 吸收率 (Absorption Laws)
      • 矛盾律 (Contradiction Law)
      • 排中律 (Law of Excluded Middle)
      • 双重否定律 (Double Negation Law)
      • 德摩根律 (De Morgan's Laws)
      • 蕴含式 (Implication)
      • 假言易位 (Contrapositive)
      • 等价式 (Equivalence)
      • 等价否定式 (Negation of Equivalence)
      • 归谬论 (Reductio ad absurdum)
    • 范式 (Normal Form)
      • 文字 (Literal)
      • 子句 (Clause)
      • 短语 (Phrase)

数理逻辑

定义

使用数学的方法研究逻辑推理的规律

命题

数理逻辑研究的中心问题是推理,而推理的前提和结论都是命题。因而命题是推理的基本单位

定义

具有确切真值的陈述句称为命题(proposition)。该命题可以取一个“值”,称为真值。真值只有“真”和“假”两种,分别用“T”(或“1”)和“F”(或“0”)表示。

不是命题的例子

一切没有判断内容的句子都不是命题,比如命令句、疑问句、祈使句、二义性的陈述句

  • 命令句:比如,“把门关上。” 这是一个请求或指令,没有真假之分。

  • 疑问句:例如,“你今天怎么样?” 这是一个问题,它没有表明任何可以验证的事实。

  • 二义性的陈述句,比如:“这个命题是假的(指当前这个命题)”

    • 如果这是一个真命题,那么这个命题确实是假的,那么这个命题到底是真还是假?
    • 如果这是一个假命题,那么这个命题不是假命题而是真命题,跟上面一样产生了矛盾。

原子命题和复合命题

定义

  • 原子命题(简单命题):不能再分解为更为简单命题的命题。
  • 复合命题:可以分解为更为简单命题的命题。这些简单命题之间是通过如“或者”、“并且”、“不”、“如果…则……”、“当且仅当”等这样的逻辑连词和标点符号复合而成。

约定

通常用大写的带或不带下标的英文字母表示命题(包括原子命题和复合命题),例如:

A , B , C , … , P , Q , R , … , A 1 , B 1 , C 1 , … , P 1 , Q i , R i , … A, B, C, \ldots, P, Q, R, \ldots, A_1, B_1, C_1, \ldots, P_1, Q_i, R_i, \ldots A,B,C,,P,Q,R,,A1,B1,C1,,P1,Qi,Ri,

命题联结词

否定联结词

定义

P 是任意一个命题,复合命题“非 P”(或“P 的否定”)称为 P 的否定式 (negation),记作 ¬P,其中 ¬ 为否定联结词。P 为真当且仅当 ¬P 为假。

例子
  • P: 四川是一个国家。
  • ¬P: 四川不是一个国家。

否定式是自然语言中的“非”、“不”、“没有”等的逻辑抽象。

真值表
P¬P
真(T)假(F)
假(F)真(T)

这个真值表表示的是,如果原命题 P 的真值为真(T),那么它的否定 ¬P 的真值为假(F),反之亦然。

合取联结词

定义

PQ 是任意两个命题,复合命题“P 并且 Q”(或“PQ”)称为 PQ 的合取式 (conjunction),记作 P∧Q,其中 “∧” 为合取联结词。P∧Q 为真当且仅当 PQ 同为真。

例子
  • P: 3 是素数。
  • Q: 3 是奇数。
  • P∧Q: 3 既是素数又是奇数。

这展示了合取命题的性质:只有当所有单独的命题都为真时,合取命题才为真。

真值表
PQP∧Q
真(T)真(T)真(T)
真(T)假(F)假(F)
假(F)真(T)假(F)
假(F)假(F)假(F)

这个真值表表示的是合取命题 P∧Q 只有在两个单个命题 PQ 都为真的情况下才为真,如果其中任何一个为假,合取命题 P∧Q 就为假。

析取联结词

定义

PQ 是任意两个命题,复合命题 “PQ” 称为 PQ 的析取式 (disjunction),记作 P∨Q,其中 “∨” 是析取联结词。P∨Q 为真当且仅当 PQ 至少有一个为真。

例子
  • P: 张谦是大学生。
  • Q: 张谦是运动员。
  • P∨Q: 张谦是大学生或是运动员。

这个例子说明了析取命题 P∨Q 的性质:只要 PQ 中至少有一个命题为真,P∨Q 就为真。

蕴含联结词

定义

PQ 是任两个命题,复合命题 “如果 P,则 Q” 称为 PQ 的蕴涵式 (implication),记作 P → Q,其中 “→” 是蕴涵联结词。P → Q 为假当且仅当 P 为真且 Q 为假。一般把蕴涵式 P → Q 中的 P 称为该蕴涵式的前件,Q 称为蕴涵式的后件。

例子
  • P: 周末天气晴朗。
  • Q: 我们将到郊外旅游。
  • P → Q: 如果周末天气晴朗,则我们将到郊外旅游。

这个例子阐明了蕴涵式 P → Q 的性质:只在 P 为真且 Q 为假的情况下,P → Q 才为假。

真值表
PQP → Q
真(T)真(T)真(T)
真(T)假(F)假(F)
假(F)真(T)真(T)
假(F)假(F)真(T)

这个真值表表示的是蕴涵式 P → Q 的真值条件。只有当 P 为真而 Q 为假时,P → Q 才为假。在其他所有情况下,P → Q 都为真。

当前件P为假,无论后件Q真假如何, P → Q都为真,这被称为善意推定。打个比方,我们将“罪证为假”设定为P,“犯人无罪”设定为Q,那么,“如果罪证为假,则犯人无罪”设定为P → Q,显然,即使P这个命题是假的,也不影响P → Q为真。

等价联结词

定义

PQ 是任两个命题,复合命题 “P 当且仅当 Q” 称为 PQ 的等价式 (equivalence),记作 P ↔ Q,其中 “↔” 是等价联结词(也称作双条件联结词)。P ↔ Q 为真当且仅当 PQ 同为真或者同为假。

例子
  • P: 两个三角形全等。
  • Q: 三角形的三条边全部相等。
  • P ↔ Q: 两个三角形全等当且仅当三角形的三条边全部相等。

这个例子表明了等价命题 P ↔ Q 的性质:它只在 PQ 同时为真或同时为假的情况下为真。

真值表
PQP ↔ Q
真(T)真(T)真(T)
真(T)假(F)假(F)
假(F)真(T)假(F)
假(F)假(F)真(T)

此真值表描述了等价联结词 P ↔ Q 的逻辑行为:当 PQ 都为真或都为假时,P ↔ Q 是真;当 PQ 之一为真而另一为假时,P ↔ Q 是假。

命题符号化及其应用

速查表格

联结词记号复合命题读法记法真值结果
否定 ¬ \neg ¬ ¬ P \neg P ¬P非 PP 的否定-P 的真值为“真”当且仅当 P的真值为“假”
合取 ∧ \land P ∧ Q P \land Q PQP 并且 QP 合取 Q P ∧ Q P \land Q PQ 的真值为“真"当且仅当 P、Q 的真值同为“真”
析取 ∨ \lor P ∨ Q P \lor Q PQP 或者 QP 析取 Q P ∨ Q P \lor Q PQ 的真值为“真”当且仅当 P、Q 的真值至少一个为“真”
蕴涵 → \rightarrow P → Q P \rightarrow Q PQ若 P,则 QP 蕴涵 Q P → Q P \rightarrow Q PQ 的真值为“假”当且仅当 P的真值为“真”、Q 的真值为“假”
等价 ↔ \leftrightarrow P ↔ Q P \leftrightarrow Q PQ当且仅当 QP 等价于 Q P ↔ Q P \leftrightarrow Q PQ 的真值为“真”当且仅当 P、Q 的真值同为“真”或同为“假”

注意:

  • ∧ \land ∨ \lor 还有 ↔ \leftrightarrow 是有对称性的,而 ¬ \neg ¬ → \rightarrow 没有。

  • 联结词是两个命题真值之间的联结而不是命题内容之间的连接,因此复合命题的真值只取决于构成他们的各简单命题的真值,而与它们的内容无关,与二者之间是否有关系无关。

优先级

所有五个联接词的优先顺序(数字越小越优先)为

  1. 否定
  2. 合取
  3. 析取
  4. 蕴涵
  5. 等价
  • 同级的联结词,按其出现的先后次序(从左到右);

  • 若运算要求与优先次序不一致时,可使用括号;

  • 同级符号相邻时,也可使用括号。括号中的运算为最高优先级。

在大多数编程语言中,否定(表现为!或者not)、合取(&&或者and)、析取(||或者or),这一顺序同样适用。

复合命题符号化

假设有命题:

  • P: 你陪伴我
  • Q: 你代我叫车子
  • R: 我将出去

下面是这些语句的符号化表示:

  1. 如果你陪伴我并且代我叫辆车子,则我将出去。

    • 符号化为: ( P ∧ Q ) → R (P\land Q)\rightarrow R (PQ)R
  2. 如果你不陪伴我或不代我叫辆车子,我将不出去。

    • 符号化为: ( ¬ P ∨ ¬ Q ) → ¬ R (\neg P \lor \neg Q)\rightarrow \neg R (¬P¬Q)¬R
  3. 除非你陪伴我或代我叫车子,否则我将不出去。

    • 符号化为: ( ¬ P ∧ ¬ Q ) → ¬ R (\neg P \land \neg Q)\rightarrow \neg R (¬P¬Q)¬R 或者可以表示为 ¬ ( P ∨ Q ) → ¬ R \neg(P \lor Q)\rightarrow \neg R ¬(PQ)¬R,依据德摩根定律。如果不使用否定符号,还可以写 R → ( P ∨ Q ) R \rightarrow (P \lor Q) R(PQ),也就是反过来。

布尔检索演示

  1. 同时包含“量子物理”和“弦理论”

    • Google搜索框输入: 量子物理 AND 弦理论
    • 数学符号表达式: 量子物理 ∧ 弦理论 量子物理 \land 弦理论 量子物理弦理论
  2. 包含“量子物理”但不包含“弦理论”

    • Google搜索框输入: 量子物理 -弦理论
    • 数学符号表达式: 量子物理 ∧ ¬ 弦理论 量子物理 \land \neg 弦理论 量子物理¬弦理论
  3. 包含“量子物理”或“相对论”

    • Google搜索框输入: 量子物理 OR 相对论
    • 数学符号表达式: 量子物理 ∨ 相对论 量子物理 \lor 相对论 量子物理相对论

命题变元

一个特定的命题是一个常值命题,不是真就是假。

一个任意的没有赋予具体内容的原子命题是一个变量命题,常称为命题变量(命题变元),无具体真值。

当原子命题是命题变元,包含此原子命题的复合命题也即命题变元的函数,该函数称为真值函数或者命题公式

如下是一个命题函数:
G = P ∧ Q → ¬ R G = P \land Q \rightarrow \neg R G=PQ¬R

命题公式

命题演算的合式公式(well formed formula, wff),又称为命题公式,简称公式。

有三条规则生成合式公式:

  1. 命题变元本身是一个公式。
  2. G是公式,则 ( ¬ G ) (\neg G) (¬G)也是公式
  3. 如G、H是公式, ( G ∧ H ) (G \land H) (GH)是公式,诸如此类都是公式

由有限步使用上述三个规则后得到的符号串才是命题公式。

  • 原子命题变元是最简单的合式公式,称为原子合式公式,简称原子公式。
  • 命题公式没有真值,只有对命题变元进行真值指派后才可确定真值。
  • 整个公式最外层括号可以省略,不影响运算次序的括号也可省略。
  • 可以使用二元树的方式表达,如下图。

在这里插入图片描述

公式的解释

P 1 , P 2 , P 3 . . . , P n P_1, P_2, P_3..., P_n P1,P2,P3...,Pn是出现在公式 G G G中的所有命题变元,指定 P 1 , P 2 , P 3 . . . , P n P_1, P_2, P_3..., P_n P1,P2,P3...,Pn的一组真值,这组真值称为 G G G的一个解释,常记为 I I I

如果公式在解释 I I I下为真,称 I I I G G G成真赋值,为假则称为成假赋值

真值表

一般来说,如果有 n n n个命题变元,则有 2 n 2^n 2n个不同解释。

由公式 G G G在其所有可能解释下所取真值构成的表,称为 G G G真值表

真值表画法
在这里插入图片描述

示例真值表

在这里插入图片描述

命题公式的分类

  1. 永真公式(重言式, tautology):公式的所有解释下真值都为
  2. 永假公式(矛盾式, contradiction):公式的所有解释下真值都为
  3. 可满足公式(satisfiable),在此公式不是永假公式的情况下,永真公式一定是可满足公式。

公式的逻辑等价

定义

对于两个命题公式 G , H G, H G,H,如果它们的命题变元是 P 1 , P 2 , P 3 . . . P n P_1, P_2, P_3 ... P_n P1,P2,P3...Pn,那么对应的有 2 n 2^n 2n个解释,如果这些解释中,G和H的真值结果全都相同,则称G和H为等价的,记作 G = H G = H G=H(或者 G ⇔ H G \Leftrightarrow H GH)。

定理

G = H G = H G=H的充分必要条件为: G ↔ H G \leftrightarrow H GH永真公式

可判定性:可完成对任意公式的判定类问题,命题公式是可判定的。(类型或等价判定)

命题公式的逻辑律、基本等价关系

有了这些逻辑律和等价关系,我们就可以进行巧妙地证明、化简、求解了。

可用于化简门电路、化简判断逻辑来进行优化性能。

幂等律 (Idempotent Laws)

  • 逻辑与的幂等律: G ∧ G ≡ G G \land G \equiv G GGG
  • 逻辑或的幂等律: G ∨ G ≡ G G \lor G \equiv G GGG

交换律 (Commutative Laws)

  • 逻辑与的交换律: G ∧ H ≡ H ∧ G G \land H \equiv H \land G GHHG
  • 逻辑或的交换律: G ∨ H ≡ H ∨ G G \lor H \equiv H \lor G GHHG

结合律 (Associative Laws)

  • 逻辑与的结合律: ( G ∧ H ) ∧ I ≡ G ∧ ( H ∧ I ) (G \land H) \land I \equiv G \land (H \land I) (GH)IG(HI)
  • 逻辑或的结合律: ( G ∨ H ) ∨ I ≡ G ∨ ( H ∨ I ) (G \lor H) \lor I \equiv G \lor (H \lor I) (GH)IG(HI)

同一律 (Identity Laws)

  • 逻辑与的同一律: G ∧ True ≡ G G \land \text{True} \equiv G GTrueG
  • 逻辑或的同一律: G ∨ False ≡ G G \lor \text{False} \equiv G GFalseG

零律 (Domination Laws)

  • 逻辑与的零律: G ∧ False ≡ False G \land \text{False} \equiv \text{False} GFalseFalse
  • 逻辑或的零律: G ∨ True ≡ True G \lor \text{True} \equiv \text{True} GTrueTrue

分配律 (Distributive Laws)

  • 逻辑与对逻辑或的分配律: G ∧ ( H ∨ I ) ≡ ( G ∧ H ) ∨ ( G ∧ I ) G \land (H \lor I) \equiv (G \land H) \lor (G \land I) G(HI)(GH)(GI)
  • 逻辑或对逻辑与的分配律: G ∨ ( H ∧ I ) ≡ ( G ∨ H ) ∧ ( G ∨ I ) G \lor (H \land I) \equiv (G \lor H) \land (G \lor I) G(HI)(GH)(GI)

吸收率 (Absorption Laws)

  • 逻辑与的吸收率: G ∧ ( G ∨ H ) ≡ G G \land (G \lor H) \equiv G G(GH)G
  • 逻辑或的吸收率: G ∨ ( G ∧ H ) ≡ G G \lor (G \land H) \equiv G G(GH)G

矛盾律 (Contradiction Law)

  • G ∧ ¬ G ≡ False G \land \lnot G \equiv \text{False} G¬GFalse

排中律 (Law of Excluded Middle)

  • G ∨ ¬ G ≡ True G \lor \lnot G \equiv \text{True} G¬GTrue

双重否定律 (Double Negation Law)

  • ¬ ( ¬ G ) ≡ G \lnot (\lnot G) \equiv G ¬(¬G)G

德摩根律 (De Morgan’s Laws)

  • ¬ ( G ∧ H ) ≡ ¬ G ∨ ¬ H \lnot (G \land H) \equiv \lnot G \lor \lnot H ¬(GH)¬G¬H
  • ¬ ( G ∨ H ) ≡ ¬ G ∧ ¬ H \lnot (G \lor H) \equiv \lnot G \land \lnot H ¬(GH)¬G¬H

蕴含式 (Implication)

  • G → H ≡ ¬ G ∨ H G \rightarrow H \equiv \lnot G \lor H GH¬GH

假言易位 (Contrapositive)

  • ( G → H ) ≡ ( ¬ H → ¬ G ) (G \rightarrow H) \equiv (\lnot H \rightarrow \lnot G) (GH)(¬H¬G)

等价式 (Equivalence)

  • ( G ↔ H ) ≡ ( G → H ) ∧ ( H → G ) (G \leftrightarrow H) \equiv (G \rightarrow H) \land (H \rightarrow G) (GH)(GH)(HG)

等价否定式 (Negation of Equivalence)

  • ( G ↔ H ) ≡ ¬ G ↔ ¬ H (G \leftrightarrow H) \equiv \neg G \leftrightarrow \neg H (GH)¬G¬H

归谬论 (Reductio ad absurdum)

  • ( ¬ G → False ) → G (\lnot G \rightarrow \text{False}) \rightarrow G (¬GFalse)G

范式 (Normal Form)

  • 有限个简单合取式(短语)的析取称为析取范式(disjunctive normal form)。
  • 有限个简单析取式(子句)的合取成为合取范式(conjunctive normal form)。

文字 (Literal)

命题变元和命题变元的否定都是文字。

例如,在表达式 ( p ∨ ¬ q ) (p \lor \lnot q) (p¬q) 中, p p p ¬ q \lnot q ¬q 都是文字。

子句 (Clause)

有限个文字的析取成为简单析取式(或子句)。

短语 (Phrase)

有限个文字的合取成为简单合取式(或短语)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2809843.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

【大数据】Flink SQL 语法篇(四):Group 聚合、Over 聚合

Flink SQL 语法篇(四):Group 聚合、Over 聚合 1.Group 聚合1.1 基础概念1.2 窗口聚合和 Group 聚合1.3 SQL 语义1.4 Group 聚合支持 Grouping sets、Rollup、Cube 2.Over 聚合2.1 时间区间聚合2.2 行数聚合 1.Group 聚合 1.1 基础概念 Grou…

【汽车电子】万字详解汽车标定与XCP协议

XCP协议基础 文章目录 XCP协议基础一、引言1.1 什么是标定1.2 什么时候进行标定1.3 标定的意义 二、XCP协议简介2.1 xcp简介2.2 XCP如何加快开发过程?2.3 XCP的主要作用 三、XCP工作过程3.1 工作过程3.2 通讯模型3.3 测量与标定 四、XCP报文解析4.1 数据包报文格式4…

vue基础操作(vue基础)

想到多少写多少把&#xff0c;其他的想起来了在写。也写了一些css的 input框的双向数据绑定 html <input value"123456" type"text" v-model"account" input"accou" class"bottom-line bottom" placeholder"请输入…

pytorch -- torch.nn下的常用损失函数

1.基础 loss function损失函数&#xff1a;预测输出与实际输出 差距 越小越好 - 计算实际输出和目标之间的差距 - 为我们更新输出提供依据&#xff08;反向传播&#xff09; 1. L1 torch.nn.L1Loss(size_averageNone, reduceNone, reduction‘mean’) 2. 平方差&#xff08;…

探索水下低光照图像检测性能,基于YOLOv6全系列【n/s/m/l】参数模型开发构建海底生物检测识别分析系统

底这类特殊数据场景下的检测模型开发相对来说比较少&#xff0c;在前面的博文中也有一些涉及&#xff0c;感兴趣的话可以自行移步阅读即可&#xff1a; 试探索水下目标检测&#xff0c;基于yolov5轻量级系列模型n/s/m开发构建海底生物检测系统》 《基于YOLOv5C3CBAMCBAM注意力…

IAA增收如何更上一层楼?NetMarvel 4招让您致胜全球

成本上涨&#xff0c;收益收紧&#xff0c;IAA厂商的增收似乎越来越难走&#xff1f;但在重定向广告被玩得如火朝天的当下&#xff0c;IAA一定是持续增长的市场。广告主、品牌方的需求只会越来越多&#xff0c;你只要确保圈住真实用户&#xff0c;流量即变现是迟早的事。 海外…

SocketWeb实现小小聊天室

SocketWeb实现小小聊天室 消息推送的常见方式轮询长轮询SSE&#xff08;server-sent event&#xff09;&#xff1a;服务器发送事件WebSocketWebSocket简介WebSocket API 实现小小聊天室实现流程消息格式客户端-->服务端服务端-->客户端 消息推送的常见方式 轮询 浏览器…

matlab经验模式分解的R波检测算法

1、内容简介 略 56-可以交流、咨询、答疑 2、内容说明 略 心血管疾病是威胁人类生命的主要疾病之一&#xff0c;而心电信号&#xff08;electrocardiogram, ECG&#xff09; 则是评价心脏功能的主要依据&#xff0c;因此&#xff0c;关于心电信号检测处理的研究一直为各方所…

APIFox-自动获取登录状态操作

APIFox-自动获取登录状态操作 概述 作为纯后端开发码农&#xff0c;每次接口开发完的调试很重要&#xff0c;因此每次重复的手动获取登陆状态Token或者直接放行就太麻烦了。 APIFox提供了前置操作&#xff0c;可以很方便的自动获取登录状态&#xff0c;节省大量重复劳动时间。…

python利用selenium实现大麦网抢票

一、selenium原理介绍 Selenium是一个用于Web[应用程序](https://link.juejin.cn/?targethttps%3A%2F%2Fbaike.baidu.com%2Fitem%2F%25E5%25BA%2594%25E7%2594%25A8%25E7%25A8%258B%25E5%25BA%258F%2F5985445%3FfromModule%3Dlemma_inlink "https://baike.baidu.com/item…

【前端素材】推荐优质后台管理系统Uena平台模板(附源码)

一、需求分析 后台管理系统&#xff08;或称作管理后台、管理系统、后台管理平台&#xff09;是一种专门用于管理网站、应用程序或系统后台运营的软件系统。它通常由一系列功能模块组成&#xff0c;为管理员提供了管理、监控和控制网站或应用程序的各个方面的工具和界面。以下…

Folx Pro Mac中文p破解版如何使用?为您带来Folx Pro 详细使用教程!

​ Folx pro 5 中文版是mac上一款功能强大的老牌加速下载软件&#xff0c;新版本的Folx pro整体界面非常的简洁和漂亮&#xff0c;具有非常好用的分类管理功能&#xff0c;支持高速下载、定时下载、速度控制、iTunes集成等功能。Folx pro兼容主流的浏览器&#xff0c;不但可以下…

面试redis篇-08数据淘汰策略

原理 当Redis中的内存不够用时,此时在向Redis中添加新的key,那么Redis就会按照某一种规则将内存中的数据删除掉,这种数据的删除规则被称之为内存的淘汰策略。 Redis支持8种不同策略来选择要删除的key: noeviction: 不淘汰任何key,但是内存满时不允许写入新数据,默认就是…

机器学习——线性代数中矩阵和向量的基本介绍

矩阵和向量的基本概念 矩阵的基本概念&#xff08;这里不多说&#xff0c;应该都知道&#xff09; 而向量就是一个特殊的矩阵&#xff0c;即向量只有一列&#xff0c;是个n*1的矩阵 注&#xff1a;一般矩阵用大写字母表示&#xff0c;向量用小写字母表示 矩阵的加减运算 两个…

计网Lesson14 - 传输层协议头分析

文章目录 1. 传输层概述1.1 传输层的作用1.2 传输层中两个重要协议1.2.1 TCP1.2.2 UDP1.2.3. 因特网中典型应用使用的运输层协议 1.3 运输层端口号1.4 UDP和TCP的对比 2. UDP报文段格式UDP首部构成 3. TCP报文段格式TCP首部构成序号和确认号的计算 1. 传输层概述 1.1 传输层的…

Typora结合PicGo + 使用Github搭建个人免费图床

文章目录 一、国内图床比较二、使用Github搭建图床三、PicGo整合Github图床1、下载并安装PicGo2、设置图床3、整合jsDelivr具体配置介绍 4、测试5、附录 四、Typora整合PicGo实现自动上传 每次写博客时&#xff0c;我都会习惯在Typora写好&#xff0c;然后再复制粘贴到对应的网…

数据结构--双向链表专题

目录 1. 双向链表的结构2. 实现双向链表预先的准备初始化尾插、头插尾删、头删查找在pos位置之后插⼊数据删除pos位置的数据 3. 顺序表和双向链表的分析 1. 双向链表的结构 注意&#xff1a;这里的“带头”跟前面我们说的“头结点”是两个概念&#xff0c;为了更好的理解直接称…

【教程】 iOS混淆加固原理篇

目录 摘要 引言 正文 1. 加固的缘由 2. 编译过程 3. 加固类型 1) 字符串混淆 2) 类名、方法名混淆 3) 程序结构混淆加密 4) 反调试、反注入等一些主动保护策略 4. 逆向工具 5. OLLVM 6. IPA guard 7. 代码虚拟化 总结 摘要 本文介绍了iOS应用程序混淆加固的缘由…

文献阅读:Transformers are Multi-State RNNs

文献阅读&#xff1a;Transformers are Multi-State RNNs 1. 内容简介2. 方法介绍 1. 基础回顾 1. RNN2. Transformer 2. Transformer解构 1. MSRNN2. Transformer 3. TOVA 1. 现有转换策略2. TOVA 3. 实验考察 & 结论 1. 实验设计2. 实验结果 1. LM2. 长文本理解3. 文本生…

Window部署Exceptionless

Exceptionless Elasticsearch 版本&#xff1a; Exceptionless&#xff1a;8.1.0 Elasticsearch&#xff1a;7.17.5 JDK&#xff1a;11.0.10 目录 一、Elasticsearch运行 二、 Exceptionless 一、Elasticsearch运行 bin目录下elasticsearch.bat 直接运行 访问 http://lo…