探索水下低光照图像检测性能,基于YOLOv6全系列【n/s/m/l】参数模型开发构建海底生物检测识别分析系统

底这类特殊数据场景下的检测模型开发相对来说比较少,在前面的博文中也有一些涉及,感兴趣的话可以自行移步阅读即可:

试探索水下目标检测,基于yolov5轻量级系列模型n/s/m开发构建海底生物检测系统》

《基于YOLOv5+C3CBAM+CBAM注意力的海底生物[海参、海胆、扇贝、海星]检测识别分析系统》

《基于自建数据集【海底生物检测】使用YOLOv5-v6.1/2版本构建目标检测模型超详细教程》 

《探索水下低光照图像检测性能,基于轻量级YOLOv8模型开发构建海底生物检测识别分析系统》

《探索水下低光照图像检测性能,基于YOLOv7【tiny/l/x】不同系列参数模型开发构建海底生物检测识别分析系统》

《探索水下低光照图像检测性能,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建海底生物检测识别分析系统》

《探索水下低光照图像检测性能,基于DETR(DEtection TRansformer)模型开发构建海底生物检测识别分析系统》

《探索水下低光照图像检测性能,基于YOLOv3全系列【yolov3tiny/yolov3/yolov3spp】参数模型开发构建海底生物检测识别分析系统》

《探索水下低光照图像检测性能,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建海底生物检测识别分析系统》

在前文我们已经实践开发了YOLO系列的模型,本文的主要想法是想要基于美团发布的的YOLOv6来开发构建海底生物检测识别系统。

首先看下实例效果:

简单看下实例数据情况:

训练数据配置文件如下所示:

# Please insure that your custom_dataset are put in same parent dir with YOLOv6_DIR
train: ./dataset/images/train # train images
val: ./dataset/images/test # val images
test: ./dataset/images/test # test images (optional)# whether it is coco dataset, only coco dataset should be set to True.
is_coco: False# Classes
nc: 4  # number of classes# class names
names: ['holothurian', 'echinus', 'scallop', 'starfish']

本文选择的是YOLOv6这一算法模型,Yolov6是美团开发的轻量级检测算法,截至目前为止该算法已经迭代到了4.0版本,每一个版本都包含了当时最优秀的检测技巧和最最先进的技术,YOLOv6的Backbone不再使用Cspdarknet,而是转为比Rep更高效的EfficientRep;它的Neck也是基于Rep和PAN搭建了Rep-PAN;而Head则和YOLOX一样,进行了解耦,并且加入了更为高效的结构。YOLOv6也是沿用anchor-free的方式,抛弃了以前基于anchor的方法。除了模型的结构之外,它的数据增强和YOLOv5的保持一致;而标签分配上则是和YOLOX一样,采用了simOTA;并且引入了新的边框回归损失:SIOU。
YOLOv5和YOLOX都是采用多分支的残差结构CSPNet,但是这种结构对于硬件来说并不是很友好。所以为了更加适应GPU设备,在backbone上就引入了ReVGG的结构,并且基于硬件又进行了改良,提出了效率更高的EfficientRep。RepVGG为每一个3×3的卷积添加平行了一个1x1的卷积分支和恒等映射的分支。这种结构就构成了构成一个RepVGG Block。和ResNet不同的是,RepVGG是每一层都添加这种结构,而ResNet是每隔两层或者三层才添加。RepVGG介绍称,通过融合而成的3x3卷积结构,对计算密集型的硬件设备很友好。

这里我们依次开发构建了n、s、m和l四款不同参数量级的模型,模型文件如下:

这里以s系列模型为例详细看下:

# YOLOv6s model
model = dict(type='YOLOv6s',pretrained='weights/yolov6s.pt',depth_multiple=0.33,width_multiple=0.50,backbone=dict(type='EfficientRep',num_repeats=[1, 6, 12, 18, 6],out_channels=[64, 128, 256, 512, 1024],fuse_P2=True,cspsppf=True,),neck=dict(type='RepBiFPANNeck',num_repeats=[12, 12, 12, 12],out_channels=[256, 128, 128, 256, 256, 512],),head=dict(type='EffiDeHead',in_channels=[128, 256, 512],num_layers=3,begin_indices=24,anchors=3,anchors_init=[[10,13, 19,19, 33,23],[30,61, 59,59, 59,119],[116,90, 185,185, 373,326]],out_indices=[17, 20, 23],strides=[8, 16, 32],atss_warmup_epoch=0,iou_type='giou',use_dfl=False, # set to True if you want to further train with distillationreg_max=0, # set to 16 if you want to further train with distillationdistill_weight={'class': 1.0,'dfl': 1.0,},)
)solver = dict(optim='SGD',lr_scheduler='Cosine',lr0=0.0032,lrf=0.12,momentum=0.843,weight_decay=0.00036,warmup_epochs=2.0,warmup_momentum=0.5,warmup_bias_lr=0.05
)data_aug = dict(hsv_h=0.0138,hsv_s=0.664,hsv_v=0.464,degrees=0.373,translate=0.245,scale=0.898,shear=0.602,flipud=0.00856,fliplr=0.5,mosaic=1.0,mixup=0.243,
)

不同参数系列模型训练命令如下:


#yolov6n
python3 tools/train.py --batch-size 16 --conf configs/yolov6n_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6n --epochs 100 --workers 2#yolov6s
python3 tools/train.py --batch-size 16 --conf configs/yolov6s_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6s --epochs 100 --workers 2#yolov6m
python3 tools/train.py --batch-size 16 --conf configs/yolov6m_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6m --epochs 100 --workers 2#yolov6l
python3 tools/train.py --batch-size 16 --conf configs/yolov6l_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6l --epochs 100 --workers 2

这里我们在训练阶段保持完全相同的参数设置,均基于官方权重进行微调开发。

训练完成结果详情如下:

【yolov6n】

【yolov6s】

【yolov6m】

【yolov6l】

一直都觉得yolov6不够火跟他的结果文件过于单一有很大的关系。

离线推理实例如下:

感兴趣的话也可以动手尝试下!

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

单个模型的训练结果默认YOLOv6n

全系列四个模型的训练结果总集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2809830.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

IAA增收如何更上一层楼?NetMarvel 4招让您致胜全球

成本上涨,收益收紧,IAA厂商的增收似乎越来越难走?但在重定向广告被玩得如火朝天的当下,IAA一定是持续增长的市场。广告主、品牌方的需求只会越来越多,你只要确保圈住真实用户,流量即变现是迟早的事。 海外…

SocketWeb实现小小聊天室

SocketWeb实现小小聊天室 消息推送的常见方式轮询长轮询SSE(server-sent event):服务器发送事件WebSocketWebSocket简介WebSocket API 实现小小聊天室实现流程消息格式客户端-->服务端服务端-->客户端 消息推送的常见方式 轮询 浏览器…

matlab经验模式分解的R波检测算法

1、内容简介 略 56-可以交流、咨询、答疑 2、内容说明 略 心血管疾病是威胁人类生命的主要疾病之一,而心电信号(electrocardiogram, ECG) 则是评价心脏功能的主要依据,因此,关于心电信号检测处理的研究一直为各方所…

APIFox-自动获取登录状态操作

APIFox-自动获取登录状态操作 概述 作为纯后端开发码农,每次接口开发完的调试很重要,因此每次重复的手动获取登陆状态Token或者直接放行就太麻烦了。 APIFox提供了前置操作,可以很方便的自动获取登录状态,节省大量重复劳动时间。…

python利用selenium实现大麦网抢票

一、selenium原理介绍 Selenium是一个用于Web[应用程序](https://link.juejin.cn/?targethttps%3A%2F%2Fbaike.baidu.com%2Fitem%2F%25E5%25BA%2594%25E7%2594%25A8%25E7%25A8%258B%25E5%25BA%258F%2F5985445%3FfromModule%3Dlemma_inlink "https://baike.baidu.com/item…

【前端素材】推荐优质后台管理系统Uena平台模板(附源码)

一、需求分析 后台管理系统(或称作管理后台、管理系统、后台管理平台)是一种专门用于管理网站、应用程序或系统后台运营的软件系统。它通常由一系列功能模块组成,为管理员提供了管理、监控和控制网站或应用程序的各个方面的工具和界面。以下…

Folx Pro Mac中文p破解版如何使用?为您带来Folx Pro 详细使用教程!

​ Folx pro 5 中文版是mac上一款功能强大的老牌加速下载软件,新版本的Folx pro整体界面非常的简洁和漂亮,具有非常好用的分类管理功能,支持高速下载、定时下载、速度控制、iTunes集成等功能。Folx pro兼容主流的浏览器,不但可以下…

面试redis篇-08数据淘汰策略

原理 当Redis中的内存不够用时,此时在向Redis中添加新的key,那么Redis就会按照某一种规则将内存中的数据删除掉,这种数据的删除规则被称之为内存的淘汰策略。 Redis支持8种不同策略来选择要删除的key: noeviction: 不淘汰任何key,但是内存满时不允许写入新数据,默认就是…

机器学习——线性代数中矩阵和向量的基本介绍

矩阵和向量的基本概念 矩阵的基本概念(这里不多说,应该都知道) 而向量就是一个特殊的矩阵,即向量只有一列,是个n*1的矩阵 注:一般矩阵用大写字母表示,向量用小写字母表示 矩阵的加减运算 两个…

计网Lesson14 - 传输层协议头分析

文章目录 1. 传输层概述1.1 传输层的作用1.2 传输层中两个重要协议1.2.1 TCP1.2.2 UDP1.2.3. 因特网中典型应用使用的运输层协议 1.3 运输层端口号1.4 UDP和TCP的对比 2. UDP报文段格式UDP首部构成 3. TCP报文段格式TCP首部构成序号和确认号的计算 1. 传输层概述 1.1 传输层的…

Typora结合PicGo + 使用Github搭建个人免费图床

文章目录 一、国内图床比较二、使用Github搭建图床三、PicGo整合Github图床1、下载并安装PicGo2、设置图床3、整合jsDelivr具体配置介绍 4、测试5、附录 四、Typora整合PicGo实现自动上传 每次写博客时,我都会习惯在Typora写好,然后再复制粘贴到对应的网…

数据结构--双向链表专题

目录 1. 双向链表的结构2. 实现双向链表预先的准备初始化尾插、头插尾删、头删查找在pos位置之后插⼊数据删除pos位置的数据 3. 顺序表和双向链表的分析 1. 双向链表的结构 注意:这里的“带头”跟前面我们说的“头结点”是两个概念,为了更好的理解直接称…

【教程】 iOS混淆加固原理篇

目录 摘要 引言 正文 1. 加固的缘由 2. 编译过程 3. 加固类型 1) 字符串混淆 2) 类名、方法名混淆 3) 程序结构混淆加密 4) 反调试、反注入等一些主动保护策略 4. 逆向工具 5. OLLVM 6. IPA guard 7. 代码虚拟化 总结 摘要 本文介绍了iOS应用程序混淆加固的缘由…

文献阅读:Transformers are Multi-State RNNs

文献阅读:Transformers are Multi-State RNNs 1. 内容简介2. 方法介绍 1. 基础回顾 1. RNN2. Transformer 2. Transformer解构 1. MSRNN2. Transformer 3. TOVA 1. 现有转换策略2. TOVA 3. 实验考察 & 结论 1. 实验设计2. 实验结果 1. LM2. 长文本理解3. 文本生…

Window部署Exceptionless

Exceptionless Elasticsearch 版本: Exceptionless:8.1.0 Elasticsearch:7.17.5 JDK:11.0.10 目录 一、Elasticsearch运行 二、 Exceptionless 一、Elasticsearch运行 bin目录下elasticsearch.bat 直接运行 访问 http://lo…

【10】知识图谱实战案例(动手做)

目录 案例1:使用neo4j构建小型金融行业知识图谱 案例2:基于金融知识图谱的问答机器人 案例3:基于金融知识图谱的企业风险挖掘 案例4:使用MRC技术完成事件抽取 案例5:基于法律领域的知识图谱 案例【6】&#xff1a…

电路设计(30)——二进制转十进制电路的Multisim仿真

1.设计要求 输入8位二进制数据,输出三位十进制,将转换后的数据显示在数码管上。 2.电路设计 此时输入为0111_1111,结果为127,正确。 3.芯片介绍 74191芯片是一款4位二进制同步上升/下降计数器,它属于TTL(…

线程普通任务执行流程

(1)先判断是否存在空闲线程,存在直接分配,不存在执行(2); (2)判断工作线程数量小于核心数量,未超出创建核心线程执行线程任务,超出执行&#xff…

k8s笔记26--快速实现prometheus监控harbor

k8s笔记26--快速实现prometheus监控harbor 简介采集指标&配置grafana面板采集指标配置grafana面板 说明 简介 harbor是当前最流行的开源容器镜像仓库项目,被大量IT团队广泛应用于生产、测试环境的项目中。本文基于Harbor、Prometheus、Grafana介绍快速实现监控…

查看ubuntu系统的版本信息(3个方法)

查看发现版本信息 lsb_release -a发行版本:Ubuntu 16.04.6 LTS 查看内核和系统位数信息 uname -a内核信息:Linux prod.aixundian.gpu-0 4.4.0-151-generic系统位数:x86_64 查看内核和编译信息 cat /proc/version内核信息:Lin…