pclpy Ransac平面分割算法输出的索引从点云中提取点云的子集

pclpy Ransac平面分割算法输出的索引从点云中提取点云的子集

      • 一、算法原理
      • 二、代码
      • 三、结果
          • 1.`sor`统计滤波
          • 2.`Ransac`内点分割平面
          • 3.`Ransac`外点分割平面
      • 四、相关数据

一、算法原理

1、Ransac介绍
RANSAC(RAndom SAmple Consensus,随机采样一致)算法是从一组含有“外点”(outliers)的数据中正确估计数学模型参数的迭代算法。“外点”一般指的是数据中的噪声,比如说匹配中的误匹配和估计曲线中的离群点。所以,RANSAC也是一种“外点”检测算法。RANSAC算法是一种不确定算法,它只能在一种概率下产生结果,并且这个概率会随着迭代次数的增加而加大(之后会解释为什么这个算法是这样的)。

RANSAC主要解决样本中的外点问题,最多可处理50%的外点情况。

在这里插入图片描述
范例

可以简单总结为以下步骤:
N:样本个数 K:求解模型需要的最少的点的个数(对于直线拟合来说就是两个点,对于计算Homography矩阵就是四个点)

随机采样K个点
对该K个点拟合模型
计算其他点到拟合模型的距离。如果小于一定阈值,该点被当作内点,统计内点个数
重复M次,选择内点数最多的模型
利用所有的内点重新估计模型(可选)

RANSAC用于拟合直线:
1.随机选取K = 2 ,2个点:
在这里插入图片描述
2.拟合一条直线:
在这里插入图片描述
3.统计内点个数,内点为绿色,此时的内点个数为9(小于一定阈值计算为内点):
在这里插入图片描述
4.重复上述过程M次,找到内点数最大的模型(继续随机选点根据k=数目进行选点):
在这里插入图片描述
5.利用所有的内点重新估计直线:
在这里插入图片描述

二、代码

from pclpy import pcldef compareCloudShow(cloud1, cloud2):"""Args:在一个窗口生成2个窗口可视化点云cloud1: 点云数据1cloud2: 点云数据2"""viewer = pcl.visualization.PCLVisualizer("viewer")  # 建立可刷窗口对象 窗口名 viewerv0 = 1  # 设置标签名(0, 1标记第一个窗口)viewer.createViewPort(0.0, 0.0, 0.5, 1.0, v0)  # 创建一个可视化的窗口viewer.setBackgroundColor(0.0, 0.0, 0.0, v0)  # 设置窗口背景为黑色single_color = pcl.visualization.PointCloudColorHandlerCustom.PointXYZ(cloud1, 255.0, 0, 0.0)  # 将点云设置为红色viewer.addPointCloud(cloud1,          # 要添加到窗口的点云数据。single_color,    # 指定点云的颜色"sample cloud1",  # 添加的点云命名v0)  # 点云添加到的视图v1 = 2  # 设置标签名(2代表第二个窗口)viewer.createViewPort(0.5, 0.0, 1.0, 1.0, v1)  # 创建一个可视化的窗口viewer.setBackgroundColor(255.0, 255.0, 255.0, v1)  # 设置窗口背景为白色single_color = pcl.visualization.PointCloudColorHandlerCustom.PointXYZ(cloud2, 0.0, 255.0, 0.0)  # 将点云设置为绿色viewer.addPointCloud(cloud2,  # 要添加到窗口的点云数据。single_color,  # 指定点云的颜色"sample cloud2",  # 添加的点云命名v1)  # 点云添加到的视图# 设置点云窗口(可移除对点云可视化没有影响)viewer.setPointCloudRenderingProperties(0,  # 设置点云点的大小1,  # 点云像素"sample cloud1",  # 识别特定点云v0)  # 在那个窗口可视化viewer.setPointCloudRenderingProperties(0,  # 设置点云点的大小1,  # 点云像素"sample cloud2",  # 识别特定点云v1)  # 在那个窗口可视化viewer.addCoordinateSystem(1.0)  # 设置坐标轴 坐标轴的长度为1.0# 窗口建立while not viewer.wasStopped():viewer.spinOnce(10)if __name__ == '__main__':# 读取点云数据cloud = pcl.PointCloud.PointXYZ()reader = pcl.io.PCDReader()reader.read('res/table_scene_lms400.pcd', cloud)print('点云数目:', cloud.size())# 创建sor滤波器 参考 pclpy SOR去除异常值(统计滤波) pclpy专栏中cloud_filtered = pcl.PointCloud.PointXYZ()sor = pcl.filters.StatisticalOutlierRemoval.PointXYZ()  # 创建sor处理对象sor.setInputCloud(cloud)  # 将cloud处理sor.setMeanK(50)  # 每个点要分析的邻居数sor.setStddevMulThresh(1.0)  # 距离查询点的平均距离大于1个标准差的点都将被标记为离群值并删除sor.filter(cloud_filtered)  # sor处理后的点云保存在这里(内点)# 可视化滤波效果compareCloudShow(cloud, cloud_filtered)  # 参考 pclpy 可视化点云(多窗口可视化、单窗口多点云可视化) pclpy在专栏中coeffs = pcl.ModelCoefficients()  # 存储估计的平面参数inliers = pcl.PointIndices()  # 存储平面模型的内点索引# 创建分割objectseg = pcl.segmentation.SACSegmentation.PointXYZ()# 可选项seg.setOptimizeCoefficients(True)# 设置seg.setModelType(0)  # 0平面模型seg.setMethodType(0)  # 表示 RANSAC 算法  open3d 平面分割(Ransac算法) 专栏open3dseg.setMaxIterations(1000)  # 设置 RANSAC 算法的最大迭代次数为 1000。seg.setDistanceThreshold(0.01)  # 设置平面模型的距离阈值为 0.01,用于判断点是否为内点(inliers)# 创建滤波objectextract = pcl.filters.ExtractIndices.PointXYZ()nr_points = cloud_filtered.size()  # 获得点云数目while cloud_filtered.size() > nr_points * 0.3:# 从保留的点云中分割最大的平面成分seg.setInputCloud(cloud_filtered)  # 将滤波后的点云数据设置为分割器的输入seg.segment(inliers, coeffs)  # 分割后的内点索引保存在 inliers 中,将平面模型系数保存在 coeffsif len(inliers.indices) == 0:print('无法对给定数据集估计平面模型。')break# 提取内点(平面成分)extract.setInputCloud(cloud_filtered)  # 从点云中提取指定索引的点 和 open3d 中的select_index_by()一样extract.setIndices(inliers)  # 将计算索引进行装填extract.setNegative(False)  # 获得内点cloud_p = pcl.PointCloud.PointXYZ()extract.filter(cloud_p)# 可视化提取出来的平面compareCloudShow(cloud_filtered, cloud_p)print("点云数目:", cloud_p.size())# 再次滤波,提取外点(非平面成分)extract.setNegative(True)   # 获得外点cloud_f = pcl.PointCloud.PointXYZ()  extract.filter(cloud_f)cloud_filtered.swap(cloud_f)  # 等价于cloud_filtered = cloud_f

三、结果

1.sor统计滤波

在这里插入图片描述

2.Ransac内点分割平面

在这里插入图片描述

3.Ransac外点分割平面

在这里插入图片描述

四、相关数据

pclpy SOR去除异常值(统计滤波):pclpy SOR去除异常值(统计滤波)-CSDN博客

pclpy 可视化点云(多窗口可视化、单窗口多点云可视化):pclpy 可视化点云(多窗口可视化、单窗口多点云可视化)-CSDN博客

open3d 平面分割(Ransac算法) open3d 平面分割(Ransac算法)-CSDN博客
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2806543.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Linux遇到黑客入侵,如何应急响应

来自:DevOps技术栈 一、服务器入侵现象 近期有一个朋友的服务器(自己做了网站)好像遭遇了入侵,具体现象是:服务器 CPU 资源长期 100%,负载较高。服务器上面的服务不能正常提供服务。 朋友处理了一会没有解…

反序列化 [NPUCTF2020]ReadlezPHP1

打开题目 直接查看源代码 打开源代码发现了个./time.php?source 访问一下 审计代码: 现存在反序列化语句:$ppp unserialize($_GET["data"]);和执行漏洞:echo $b($a); 发现在__destruct()方法里面有 echo $b($a); 这个是php的…

用友NC65与用友NCC对接集成NC65-凭证列表查询打通凭证新增

用友NC65与用友NCC对接集成NC65-凭证列表查询打通凭证新增 数据源平台:用友NC65 用友NC是为集团与行业企业提供的全线管理软件产品,由亚太本土最大的企业管理软件提供商用友公司研发提供,用友NC率先采用J2EE架构和先进开放的集团级开发平台UAP&#xff0…

外星文明会是朋友还是敌人?科学家用AI模拟揭示惊人答案!

引言:人类与外星文明的潜在互动 自古以来,人类就对外太空充满了好奇与向往,无数科幻作品中都描绘了人类与外星文明的潜在互动。然而,这些互动并非总是和平友好的,正如物理学家Stephen Hawking所警告的,盲目…

K线实战分析系列之六:启明星——空方力量减弱信号

KK线实战分析系列之六:启明星——空方力量减弱信号 一、星线二、多种反转形态三、启明星形态四、启明星形态的总结 一、星线 星线在单根K线形态上是属于纺锤线,之所以被称为星线,主要是因为它在行情当中的相对位置,区别于其他纺锤…

Unity(第四部)新手组件

暴力解释就是官方给你的功能;作用的对象上面如: 创建一个球体,给这个球体加上重力 所有物体都是一个空物体,加上一些组件才形成了所需要的GameObject。 这是一个空物体,在Scene场景中没有任何外在表现,因为…

Java零基础 - 条件运算符

哈喽,各位小伙伴们,你们好呀,我是喵手。 今天我要给大家分享一些自己日常学习到的一些知识点,并以文字的形式跟大家一起交流,互相学习,一个人虽可以走的更快,但一群人可以走的更远。 我是一名后…

测绘测量行业CRM功能大揭秘:哪家才是最佳选择?

测绘测量行业面临着处理及管理海量数据的难题。办公软件进行数据记录是非常繁琐的,往往需要花费大量的时间来查找所需的信息,甚至造成内容丢失。测绘测量企业运用CRM管理系统至关重要。本文将向您介绍测绘测量行业CRM功能、哪家好? CRM软件的…

typora + sm.ms +picgo 撰写博客,上传图片

时间:2024/2/22 参考链接: Typora PicGo SM.MS实现图片自动上传 - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/256217410Molunerfinn_PicGops: 不稳定, 完了试试gitee 这个从上传图片改到复制到对应文件夹又好了,难崩 具…

【Python-语法】

Python-语法 ■ Python基础■ 数据类型■ 注释 单行注释,多行注释■ 编码方式 ■■■■■ ■ Python基础 ■ 数据类型 ■ 注释 单行注释,多行注释 ■ 编码方式 ■ ■ ■ ■ ■

在线程调用的函数中使用pthread_exit同样会将线程退出

如上图所示,在func()函数中调用pthread_exit,同样可以退出当前线程; 类似的,如果func()函数中调用exit,可以直接退出整个进程。 return 是返回到函数调用处; pthread_exit是退出…

模型 HBG(品牌增长)

系列文章 分享 模型,了解更多👉 模型_总纲目录。品牌增长法。 1 HBG(品牌增长)模型的应用 1.1 江小白使用HBG模型提高品牌知名度和销售额 选择受众市场:江小白的目标客户是年轻人,他们喜欢简单、时尚的产品。因此,江…

【C++初阶】--类和对象(下)

目录 一.const成员 1.权限放大问题 2.权限的缩小 二.再谈构造函数 1.构造函数体赋值 2.初始化列表 (1)概念 (2)使用 ①在对象实例化过程中,成员变量先依次进行初始化 ②再进行函数体内二次赋值 3.explicit关键字 (1)C为什么要存在自动隐式类型转换…

从概念到实现:开发一款招聘APP的技术指南

如今,招聘APP作为连接求职者和招聘企业的重要工具,其功能和性能直接影响着用户体验和市场竞争力。本文将带领读者深入探讨从概念到实现的全过程,为开发一款优秀的招聘APP提供技术指南。 一、理解市场需求与用户行为 在开发招聘APP之前&#…

Android BitmapDrawable.bitmap与BitmapFactory.decodeResource获取不到原始图像素级真实宽高,Kotlin

Android BitmapDrawable.bitmap与BitmapFactory.decodeResource获取不到原始图像素级真实宽高,Kotlin 当一个图片放在ImageView里面后,用以下方式获取图的宽高: val bmp1 (this.drawable as BitmapDrawable).bitmapLog.d("fly", &…

C语言——实用调试技巧——第2篇——(第23篇)

坚持就是胜利 文章目录 一、实例二、如何写出好(易于调试)的代码1、优秀的代码2、示范(1)模拟 strcpy 函数方法一:方法二:方法三:有弊端方法四:对方法三进行优化assert 的使用 方法五…

【C++STL】STL容器详解

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; &#x1f525;c系列专栏&#xff1a;C/C零基础到精通 &#x1f525; 给大…

VMware虚拟机从一台电脑复制到另一台电脑

1 概述 在一台电脑上利用虚拟机安装了OS系统&#xff0c;特别是如果虚拟机中的系统进行了各种繁琐的配置&#xff0c;因为换电脑或者需要在其他电脑上配置&#xff0c;这个时候就可以将虚拟机中的系统复制拷贝一份到新电脑上&#xff0c;省时省力。 2 操作步骤 2.1 vmx文件 …

Python学习 --- 面向对象

1.什么是对象 1.Python中创建类的关键字是 class 2.类的成员方法 1.函数是写在类外面的,方法则是写在类里面的 1.上面这一段代码中就展示了如何在方法中访问类的成员变量: self.成员变量名 3.魔术方法 魔术方法其实就是python中的类中的内置方法,下面这几个只是我们比较常…

高级语言期末2011级B卷

1.编写函数&#xff0c;实现按照如下公式计算的功能。其中n为自然数。 #include <stdio.h>int fac(int n) {if(n0)return 1;elsereturn n*fac(n-1); }double func(int n) {if(n0)return 0;return 1.0*n/((n1)*fac(n2))func(n-1); } 2.编写函数&#xff0c;对给定的整数数…