图像处理之《隐写网络的隐写术》论文阅读

一、文章摘要

隐写术是一种在双方之间进行秘密通信的技术。随着深度神经网络(DNN)的快速发展,近年来越来越多的隐写网络被提出,并显示出良好的性能。与传统的手工隐写工具不同,隐写网络的规模相对较大。如何在公共信道上秘密传输隐写网络引起了人们的关注,这是隐写技术在实际应用中的关键阶段。为了解决这一问题,本文提出了一种新的隐写网络隐写方案。不像现有的隐写方案,其重点是微妙的修改封面数据,以适应秘密。我们建议将隐写网络(称为秘密DNN模型)伪装成执行普通机器学习任务(称为隐写任务)的隐写DNN模型。在模型伪装过程中,我们在秘密DNN模型中选择和调整一个过滤器子集,以保持其在秘密任务上的功能,其中剩余的过滤器根据部分优化策略重新激活,将整个秘密DNN模型伪装成一个隐写DNN模型。秘密DNN模型可以在需要时从隐写DNN模型中恢复。已经进行了各种实验来证明我们提出的方法在隐写网络和一般DNN模型的隐蔽通信方面的优势。
在这里插入图片描述

二、问题公式化

给定要伪装的秘密DNN模型,我们的目标是选择和调整过滤器的子集以保持秘密DNN的功能,其中剩余的过滤器被重新激活,使整个模型在普通机器学习任务(比如一个隐写任务)上工作,以建立一个用于模型伪装的隐写 DNN模型。必要时可以从隐写DNN模型中恢复秘密DNN模型,如图2所示。
在这里插入图片描述
图2 DNN模型伪装与恢复的实例

我们将秘密和隐写 DNN模型分别表示为Θ和~ Θ,其中~Θ是对Θ进行伪装后的优化。我们使用两个数据集,一个秘密数据集和一个隐写数据集对秘密和隐写任务进行模型伪装,表示为Dse = {xe,ye}和Dst = {xt,yt},其中xe,xt为样本,ye,yt为标签。我们进一步将模型伪装过程表示为P,可以表示为
在这里插入图片描述

其中ΘS是为秘密任务选择的子集,K是密钥。有了隐写深度神经网络模型,接收端可以通过以下方法恢复隐深度神经网络模型
在这里插入图片描述

其中Q为模型恢复。
对于隐蔽通信,P和Q的设计应满足以下特性。
1)可恢复性:恢复的秘密DNN模型在秘密任务上的性能应与其原始版本相似。
2)准确度:对于隐写任务,隐写DNN模型的性能要高。
3)容量:隐写DNN模型的大小不应比隐写DNN模型扩展太多,以实现高效传输。
4)不可检测性:攻击者应该很难从隐写DNN模型中识别出秘密DNN模型的存在。

三、提出的方法

我们的模型伪装首先从秘密DNN模型的卷积层中选择一个过滤器子集,这在秘密任务中很重要,但在隐写任务中微不足道。然后,我们提出了一种局部优化策略,从秘密DNN模型中获得隐写DNN模型。上述过程可以逐步执行以获得最佳性能。我们还提出了几种策略来处理现实世界应用程序中其他层中的参数。

3.1 过滤器的选择

假设秘密DNN模型(即Θ)包含L个卷积层,第L个卷积层中的滤波器可以表示为一个4维张量:Wl ϵRdl×cl×s 1×sl2,其中dl是滤波器的数量,每个滤波器包含cl个2维空间核。sl1和sl2分别对应内核的高度和宽度。将Wli,:,:,:表示为第l层中所有滤波器的第i个滤波器,将Wl:,j,:,:表示为第j个通道。忽略全连通层,我们有:Θ={W1,W2,···,WL},其中Wl={Wl1,:,:,:,Wl 2,:,:,:,··,Wldl,:,:,:}滤波器方向或Wl={Wl:,1,:,:,Wl:1,:,:,···,Wl:,cl,:,:}通道方向。

过滤器选择的目的是选择对秘密任务重要但对隐写任务不重要的过滤器。在我们的讨论中,我们把这样的过滤器称为模型伪装中的重要过滤器。对于单个机器学习任务,研究表明,可以根据滤波器权重的梯度来衡量滤波器的重要性(Dai,Yin,和Jha 2019;Yang,Lao,和Li 2021)。然而,在我们的例子中,我们想要识别那些在秘密任务中包含大梯度而在隐写任务中包含小梯度的权重的过滤器。对于秘密DNN模型Θ的第l卷积层的第i个滤波器,我们分别用GoEl i和GoTl i来衡量其对秘密任务和隐写任务的重要性,其中
在这里插入图片描述

其中AVG返回三维张量的均值,Le和Lt分别是秘密任务和隐写任务的损失函数。在这里,我们考虑了两个连续卷积层之间的相关性。这是因为第l层的滤波器Wli,:,:,:生成的特征映射将与第(l+1)层的通道Wl+1i,:,:,:进行卷积。对于某个任务,Wli,:,:,:和Wl+1i,:,:,:的权重之间存在很强的相关性。因此,我们既要考虑当前滤波器中权值的梯度,也要考虑下一层相应通道中的权值梯度。然后计算滤波器对模型伪装的重要性为
在这里插入图片描述

其中λg是用于平衡的重量。根据αli,我们从秘密DNN模型Θ中选择最重要的N个用于模型伪装的过滤器,形成执行秘密任务的子集ΘS

3.2 部分优化

部分优化的目的是使ΘS在秘密任务上工作,Θ在隐写任务上工作。首先,我们对秘密数据集ΘS中的过滤器进行微调
在这里插入图片描述

其中λe为秘密任务的学习率。然后,我们冻结ΘS,重新初始化并重新激活隐写数据集Dst上Θ中剩余的过滤器,用于以下优化问题:
在这里插入图片描述

其中C是常数空间。为此,我们引入M,一个与Θ大小相同的二进制掩码,用于部分优化,以防止ΘS在反向传播期间更新。设λt为隐写任务的学习率,⊙表示逐元素乘积,对秘密DNN模型进行如下优化,形成隐写DNN模型~Θ:
在这里插入图片描述
其中Θ[i]为Θ中的第i个参数。

3.3 渐进式模型伪装

为了从秘密DNN模型中训练出具有良好性能的秘密和隐写任务的隐写DNN模型,我们建议从秘密DNN模型Θ中逐步选择重要滤波器ΘS进行模型伪装。特别是,我们从ΘS中迭代地选择一组重要的过滤器来训练隐写 DNN模型,直到隐写 DNN模型在秘密和隐写任务上取得满意的性能。

为了简单起见,我们在第t次迭代中将重要的过滤器集表示为ΘSt,将伪装的隐写深度神经网络模型表示为~Θt,其中我们设置ΘS0 = Θ和~Θ0 = Θ进行初始化。在第t次迭代中,我们从ΘSt−1中选择最重要的前Pt个过滤器形成ΘSt,用于训练一个隐写DNN模型~Θt,其中
在这里插入图片描述

其中λp < 1为衰减因子,V为Θ中滤波器的个数。我们终止迭代,直到隐写DNN模型在秘密任务上的性能降低值大于τse,或者在秘密任务和隐写任务上分别小于τse和τst。算法1给出了上述过程的伪代码,其中αset和αstt为隐写DNN模型在秘密任务和隐写任务第t次迭代时的性能降低。
在这里插入图片描述

经过渐进式模型伪装后,我们将~Θ中每个过滤器的属性记录为L个二进制流B = {b1,b2,···,bL}。每个卷积层对应一个d1位二进制流bl,d1为该层中滤波器的个数。每个位对应一个过滤器,0表示属于ΘS,否则为1。我们将B作为辅助信息,根据主机B的密钥K,从隐写DNN模型中随机选择一组参数。具体来说,我们将B的每一位嵌入到一个选定的参数中,如下所示。我们将参数转换为整数,并根据要隐藏的位翻转其最低有效位。然后将隐含数据的参数反变换为浮点数,完成嵌入过程

在模型恢复中,接收方使用密钥K从隐写DNN模型中恢复辅助信息B,基于此我们可以识别重要的滤波器ΘS,为秘密任务建立秘密DNN模型

3.4 隐藏其他层

批处理归一化层。归一化层,如批归一化(BN) (Ioffe和Szegedy 2015)、组归一化(GN) (Wu和He 2018)、层归一化(LN) (Ba,Kiros,和Hinton 2016)和实例归一化(IN) (Ulyanov,Vedaldi,和Lempitsky 2016),在加速模型训练的收敛和性能提升方面发挥着至关重要的作用。所有这些归一化层将根据一些特征统计对中间层的特征映射进行归一化。BN在训练过程中利用特征映射的移动平均均值和标准差,这在秘密学习任务和隐写学习任务之间是完全不同的。因此,在使用BN时,我们将秘密DNN模型的相应特征统计信息作为隐藏到隐写DNN模型中的辅助信息存储在B中。其他类型的归一化层,即GN,LN,IN,不会引入额外的开销

完全连接层。完全连接层在深度神经网络模型中非常常见,我们将其视为特殊的卷积层。对于具有f个神经元的完全连接层,我们将其表示为f个过滤器,每个过滤器为c × 1 × 1张量,其中c是完全连接到该层的反向神经元的数量。

输出层自适应。在实际应用中,秘密深度神经网络模型和隐写深度神经网络模型的输出层的维度通常是不同的。为简单起见,我们将秘密和隐写 DNN模型的输出层分别表示为layere和layert。我们进一步将layere和layert中的神经元数量分别表示为Oe和Ot。当Oe < Ot时,我们对层进行上采样,使其与层的维数相同,进行自适应。然而,当Oe > 0时,不适合直接下采样本层,因为这种策略不可避免地会扭曲秘密DNN模型的功能。为了补救,我们建议在层中添加额外的神经元,将其伪装成倒数第二个全连接层。然后,我们新增一个与layert具有相同维数的最后一层进行自适应。图3显示了我们对不同情况的输出层适配。不会将所有新添加的参数都选择到ΘS中执行秘密任务。

在这里插入图片描述
图3 输出层自适应

四、实现细节

我们对我们提出的方法进行了两种类型的实验:1)隐写网络的隐写(SSN),其中秘密DNN模型是一个秘密解码器,以及2)通用网络的隐写(SGN),其中秘密DNN模型是一个通用机器学习任务的DNN模型

在SSN中,我们使用HiDDeN的秘密解码器(Zhu等人2018)作为秘密任务的秘密DNN模型,并从COCO数据集1中随机选择11000张图像组成秘密数据集,该数据集被分成10000/1000张图像进行训练和测试。我们使用原始和解码的秘密信息之间的误码率(BER)作为秘密解码器的性能指标。我们将GTSRB (Stallkamp等人 2012)分类任务作为模型伪装的隐写任务。我们使用GTSRB数据集作为隐写数据集,其中随机选择80%/20%的图像进行训练/测试。我们采用分类精度(ACC)作为评价隐写DNN模型性能的指标。

在SGN中,我们在两个著名的DNN模型上评估了我们的方法:ResNet18 (He等人2016)和U-net (Ronneberger,Fischer,和Brox 2015)。对于ResNet18,我们将Fashion-MNIST (Xiao,Rasul,和Vollgraf 2017)分类任务作为秘密任务,将CIFAR10 (Krizhevsky,Hinton等人2009)分类任务作为模型伪装的隐写任务。对于秘密和隐写数据集,我们使用它们的默认分区进行训练和测试,其中ACC作为性能指标。

对于U-net,我们假设图像去噪任务作为秘密任务,其中U-net在添加高斯噪声后,在从ImageNet (Deng等人2009)随机选择10000/1000张图像的秘密数据集上进行训练/测试。我们计算峰值单噪声比(PSNR)来评估去噪性能。我们将图像分割任务作为模型伪装的隐写任务,其中采用oxford-pet数据集(Parkh等人2012)作为步进数据集。我们随机将Oxford-Pet数据集分成三部分,包括6000张用于训练的图像,1282张用于验证的图像和100张用于测试的图像。我们采用了平均交联(mIOU)作为深度神经网络模型的性能指标。

对于SSN和SGN,我们设置λg=0.01, λe=λt=0.001, λp=0.9, τst=0.01。对于τse,我们分别为HiDDeN、ResNet18和U-net的秘密解码器设置0.0001、0.01和0.5。我们通过Kaimig初始化重新初始化剩余的过滤器(He等人2015)。所有模型都以BN为归一化层,并使用Adam (Kingma和Ba 2014)优化器进行优化。我们所有的实验都是在Ubuntu 18.04系统上进行的,它有四个NVIDIA RTX 1080 Ti gpu。

论文地址:Steganography of Steganographic Networks

没有公布源码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2780108.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

甘肃旅游服务平台:技术驱动的创新实践

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…

【Effective Objective - C 2.0】——读书笔记(一)

文章目录 前言一、了解Objective-C语言的起源OC的起源运行期组件和内存管理 二、在类的头文件中尽量少引入其他头文件尽量延后引入头文件或者单独开辟一个文件向前声明 三、多用字面量语法&#xff0c;少用与之等价的方法四、多用类型常量&#xff0c;少用#define预处理指令五、…

synchronized 浅读解析 一

引言 在学习synchronized前&#xff0c;我们实际上是需要先了解Java对象在jvm中的储存结构&#xff0c;在了解了它的实际储存方式后&#xff0c;再对后边的锁学习会有一个更好更深入的理解。 一、对象结构 我们为什么要知道什么是对象头 在学习synchronized的时候&#xff0c…

Java 集合、迭代器

Java 集合框架主要包括两种类型的容器&#xff0c;一种是集合&#xff08;Collection&#xff09;&#xff0c;存储一个元素集合&#xff0c;另一种是图&#xff08;Map&#xff09;&#xff0c;存储键/值对映射。Collection 接口又有 3 种子类型&#xff0c;List、Set 和 Queu…

P1028 [NOIP2001 普及组] 数的计算题解

题目 给出正整数n&#xff0c;要求按如下方式构造数列&#xff1a; 只有一个数字n的数列是一个合法的数列。在一个合法的数列的末尾加入一个正整数&#xff0c;但是这个正整数不能超过该数列最后一项的一半&#xff0c;可以得到一个新的合法数列。 请你求出&#xff0c;一共…

vtk三维场景基本要素 灯光、相机、颜色、纹理映射 简介

整理一下VTK 三维场景基本要素&#xff0c;后面会一一进行整理&#xff1b; 1. 灯光 vtkLight 剧场里有各式各样的灯光&#xff0c;三维渲染场景中也一样&#xff0c;可以有多个灯光存在。灯光和相机 是三维渲染场景必备的要素&#xff0c;vtkRenderer会自动创建默认的灯光和…

24个已知403绕过方法的利用脚本

介绍 一个简单的脚本&#xff0c;仅供自用&#xff0c;用于绕过 403 在curl的帮助下使用24个已知的403绕过方法 它还可用于比较各种条件下的响应&#xff0c;如下图所示 用法 ./bypass-403.sh https://example.com admin ./bypass-403.sh website-here path-here 安装 git …

opencv图像像素的读写操作

void QuickDemo::pixel_visit_demo(Mat & image) {int w image.cols;//宽度int h image.rows;//高度int dims image.channels();//通道数 图像为灰度dims等于一 图像为彩色时dims等于三 for (int row 0; row < h; row) {for (int col 0; col < w; col) {if…

[ai笔记1] 借着“ai春晚”开个场

1 文思ai笔记-新的开始 今天是2024年2月29日&#xff0c;也是传统农历的除夕夜。早起在ai圈看到一个比较新奇的消息&#xff0c;ai春晚今日举办&#xff0c;竟然有一点小小的激动。这些年确实好久没看过春晚了&#xff0c;自己对于春晚的映像还停留在“白云黑土”、“今天&…

AI修复历史人物 图像转真人 绝密档案

修复李白 开启control 不要点爆炸小按钮 权重建议&#xff1a;0.7-1.2 采样&#xff1a;DPM SDE Karras 如果人眼不好&#xff0c;开启高清修复&#xff0c;进行2次尝试 高难度 修复张居正 softhed 1 lineart_真实 1 适当调整lineart进入值。 如果效果不好&#xff…

ubuntu中尝试安装ros2

首先&#xff0c;ubuntu打开后有个机器人栏目&#xff0c;打开后&#xff0c;有好多可选的&#xff0c;看了半天 ,好像是博客&#xff0c;算了&#xff0c;没啥关系&#xff0c;再看看其他菜单 这些都不是下载链接。先不管&#xff0c;考虑了一下&#xff0c;问了ai&#xff…

一、西瓜书——绪论

第一章 绪论 1.独立同分布 通常 假设 样本空间 中 全 体样 本 服 从 一 个 未 知 “ 分 布 ” ( d i s t r i b u t i o n ) D , 我们获得的每个样本都是独立地从这个分布上采样获得的&#xff0c; 即 “ 独 立同 分布 ” ( i n d e p e n d e n t a n d i d e n t ic a …

【2024.02.11】定时执行专家 V6.9 龙年春节版 - 下载地址更新日志

目录 ◆ 最新版下载链接 ◆ 软件更新日志 – TimingExecutor Full Change Log ▼2024-02-11 V6.9 ▼2023-06-16 V6.8.2 ▼2023-02-27 V6.7 ▼ 2023-01-23 V6.6 ▼ 2023-01-20 V6.5 ▼ 2022-12-25 V6.4 ▼ 2022-11-15 V6.3 ▼ 2022-10-01 V6.2 ▼ 2022-07-…

寒假作业-day8

代码&#xff1a; #include<stdio.h> #include<stdlib.h> #include<string.h>int jiecheng(int n){if(n<1)return 1; return n*jiecheng(n-1); }int sum(int n){if(n<0)return 0;return nsum(n-1); }int feb(int n){if(n<2)return 1;elsereturn fe…

Java图形化界面编程—— LayoutManager布局管理器笔记

2.4 LayoutManager布局管理器 之前&#xff0c;我们介绍了Component中有一个方法 setBounds() 可以设置当前容器的位置和大小&#xff0c;但是我们需要明确一件事&#xff0c;如果我们手动的为组件设置位置和大小的话&#xff0c;就会造成程序的不通用性&#xff0c;例如&…

跟踪分析一款新型Megahorse窃密木马

前言 最近几年黑客组织利用各种不同类型的恶意软件进行的网络犯罪活动越来越多&#xff0c;这些恶意软件包含勒索病毒、挖矿病毒、APT远控后门、银行木马、僵尸网络等&#xff0c;企业的数据一直是企业的核心资产&#xff0c;勒索攻击也由最初始的单纯的通过某个单一漏洞传播勒…

四.Linux实用操作 12-14.环境变量文件的上传和下载压缩和解压

目录 四.Linux实用操作 12.环境变量 环境变量 环境变量--PATH $ 符号 自行设置环境变量 自定义环境变量PATH 总结 四.Linux实用操作 13.文件的上传和下载 上传&#xff0c;下载 rz&#xff0c;sz命令 四.Linux实用操作 14.压缩和解压 压缩格式 tar命令 tar命令压缩…

uniapp微信小程序开发踩坑日记:Pinia持久化

如果你使用过Pinia&#xff0c;那你应该知道Pinia持久化插件&#xff1a;https://prazdevs.github.io/pinia-plugin-persistedstate/zh/ 但由于官方文档提供的说明并不是针对小程序开发&#xff0c;所以我们在使用这个插件实现uniapp小程序开发中Pinia持久化会出现问题 我在C…

Redis.conf 配置文件解读

1、单位 容量单位不区分大小写&#xff0c;G和GB没有区别 配置文件 unit单位 对大小写不敏感 2、组合配置 可以使用 include 组合多个配置问题 3、网络配置 bind 127.0.0.1 # 绑定的ip protected-mode yes # 保护模式 port 6379 # 端口设置4、通用 GENERAL daemoniz…

Arm发布新的人工智能Cortex-M处理器

Arm发布了一款新的Cortex-M处理器&#xff0c;旨在为资源受限的物联网&#xff08;IoT&#xff09;设备提供先进的人工智能功能。这款新的Cortex-M52声称是最小的、面积和成本效率最高的处理器&#xff0c;采用了Arm Helium技术&#xff0c;使开发者能够在单一工具链上使用简化…