基于opencv-python模板匹配的银行卡号识别(附源码)

目录

介绍

数字模板处理

银行卡图片处理 

导入数字模板

模板匹配及结果


介绍

我们有若干个银行卡图片和一个数字模板图片,如下图

我们的目的就是通过对银行卡图片进行一系列图像操作使得我们可以用这个数字模板检测出银行卡号。

数字模板处理

首先我们先对数字模板进行处理,处理的目的是将数字模板中的每个数字分割开来。

先导入需要用到的包

import cv2
import os
import numpy as np
import matplotlib.pyplot as plt

然后再定义一个修改图片尺寸的函数

#修改尺寸
def img_resize(img, hight):(h, w) = img.shape[0], img.shape[1]r = h / hightwidth = w / rimg = cv2.resize(img, (int(width), int(hight)))    return img

接下来,我们读入数字模板图片并对其进行灰度化,二值化和轮廓检测

#读入总模板
img = cv2.imread('images/ocr_a_reference.png')
ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ref,thresh= cv2.threshold(ref, 127, 255, cv2.THRESH_BINARY_INV)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

由于模板比较简单,故用这些操作即可分割出来数字模板中的每个数字,我们可以看一下操作完后的结果

for i in range(len(contours)):x, y, w, h = cv2.boundingRect(contours[i])plt.subplot(3, 4, i + 1)plt.imshow(thresh[y:y + h, x:x + w], cmap=plt.cm.gray)plt.xticks([])plt.yticks([])plt.show()

接下来,我们将各个模板保存起来,以便于后期读取使用

#保存模板
if not os.path.exists('data'):os.mkdir('data')for i in range(len(contours)):x, y, w, h = cv2.boundingRect(contours[i])cv2.imwrite(os.path.join('data', str(9-i)+'.jpg'), thresh[y:y+h, x:x+w])

保存完后会生成一个data文件夹,可以看到每个数字都已经单独分割保存为单张图片了

到这里,数字模板处理就完成了

银行卡图片处理 

我们是要基于模板匹配去识别具体的银行卡号,而且我们在上述操作中已经得到了每个数字的模板,所以我们现在只需要从银行卡里面切割处理每个银行卡号,就可以进行模板匹配,那么怎么切割出银行卡里的每个号码呢,这里小编尝试过直接用图像处理技术进行单个切割,但发现效果并不好。此时我们发现银行卡号共有16位,其中每4位离的都比较近,那我们可不可以先画出整体四个,然后再对四个进行单独切割呢,显然,这样做的效果是比较好的。

 我们首先读入银行卡图片并修改尺寸和做灰度化处理

#灰度化
img = cv2.imread('images/credit_card_01.png')
img = img_resize(img, 200)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
plt.imshow(gray, cmap=plt.cm.gray)

 然后对灰度图进行礼貌操作,用来突出银行卡中的数字

#礼貌操作
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 5))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
tophat = cv2.morphologyEx(gray,cv2.MORPH_TOPHAT,rectKernel)
plt.imshow(tophat, cmap=plt.cm.gray)

然后利用sobel算子增强图片的边缘信息,即增强数字信息

#sobel边缘检测
sobel = cv2.Sobel(tophat, cv2.CV_64F,dx=1, dy=0, ksize=3)
sobel = cv2.convertScaleAbs(sobel)
minval, maxval = np.min(sobel), np.max(sobel)
sobel = (255 * ((sobel - minval) / (maxval - minval)))
sobex = sobel.astype('uint8')
plt.imshow(sobex, cmap=plt.cm.gray)

 再对图像进行膨胀和腐蚀的操作,使得每四个数字连接在一起

#膨胀腐蚀
dilate = cv2.dilate(sobel, rectKernel, 10)
erosion = cv2.erode(dilate, rectKernel, 10)
plt.imshow(erosion, cmap=plt.cm.gray)

此时发现图像上有些噪声,所以我们对图像进行二值化操作,以去除这些白点

#二值化
erosion = cv2.convertScaleAbs(erosion)
ret, thresh = cv2.threshold(erosion, 0, 255, cv2.THRESH_BINARY|cv2.THRESH_OTSU)
plt.imshow(thresh, cmap=plt.cm.gray)

 

进行完二值化操作后,再进行一次膨胀腐蚀操作,加深数字区域信息

#膨胀腐蚀
dilate = cv2.dilate(thresh, sqKernel, 10)
erosion = cv2.erode(dilate, sqKernel, 10)
plt.imshow(dilate, cmap=plt.cm.gray)

现在效果就比较好了,我们就可以在此图像上画轮廓了

#画轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
cur_img = img.copy()
cur_img = cv2.cvtColor(cur_img, cv2.COLOR_BGR2RGB)
cv2.drawContours(cur_img,contours,-1,(0,0,255),3)
plt.imshow(cur_img)

 

但是我们发现,这个轮廓不仅廓住了数字区域,还廓住了其他区域,此时我们将数字区域轮廓过滤出来,并画出来数字区域显示一下(数字是棕色的是因为此时显示的BGR图像)

#过滤轮廓
locs = []
for(i,c) in enumerate(contours):(x,y,w,h) = cv2.boundingRect(c)ar = w/float(h)if ar>2.5 and ar<4.0:if(w>40 and w<60) and (h>10 and h<20):locs.append((x,y,w,h))
print(len(locs))for i in range(len(locs)):x,y,w,h = locs[3-i]contour = img[y:y+h, x:x+w,:]plt.subplot(2, 2, i+1)plt.imshow(contour)plt.xticks([])plt.yticks([])plt.show()

 

此时没有银行卡上其他信息的干扰,我们可以很简单的使用灰度化,二值化和轮廓检测来廓住每个单独的数字

#进行最后的处理
results = []
for i in range(len(locs)):x,y,w,h = locs[3-i]img_new = img[y:y+h, x:x+w,:]gray = cv2.cvtColor(img_new, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY|cv2.THRESH_OTSU)contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)res = img_new.copy()for j in range(len(contours)):x, y, w, h = cv2.boundingRect(contours[3-j])res = cv2.rectangle(res, (x, y), (x+w, y+h), (255, 0, 0), 1)results.append(thresh[y:y+h, x:x+w])plt.subplot(2, 2, i+1)plt.imshow(res, cmap=plt.cm.gray)plt.xticks([])plt.yticks([])plt.show()

最后我们就可以得到银行卡中的每个单独号码

#可以看一下results
for i in range(16):results[i] = cv2.resize(results[i], (10, 15))plt.subplot(2, 8, i+1)plt.imshow(results[i], cmap=plt.cm.gray)plt.xticks([])plt.yticks([])plt.show()

 

导入数字模板

在处理完银行卡后,我们导入我们一开始获得的数字模板,进行最后的模板匹配

#引入模板
digits = {}
for i in range(10):digits[i] = cv2.resize(cv2.imread('data/{}.jpg'.format(i)), (10, 15))digits[i] = cv2.cvtColor(digits[i], cv2.COLOR_BGR2GRAY)ref, digits[i] = cv2.threshold(digits[i], 0, 255, cv2.THRESH_BINARY|cv2.THRESH_OTSU)for i in range(10):plt.subplot(2, 5, i+1)plt.imshow(digits[i], cmap=plt.cm.gray)plt.xticks([])plt.yticks([])plt.show()

模板匹配及结果

导入数字模板后,就可以进行模板匹配得到结果了

#模板匹配得出结果
res = ''
for i in results:scores = []for j in range(10):result = cv2.matchTemplate(i, digits[j], cv2.TM_CCOEFF)  # result为一个输出矩阵(_, score, _, _) = cv2.minMaxLoc(result)  # 这个方法会返回最小值,最大值,最小值位置和最大值位置scores.append(score)res = res + str(np.argmax(scores))
print(res)plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.show

我们也可以看一下其他银行卡的匹配结果 

 

其中有一张银行卡号的识别好像因为环境等因素出了点问题,其他的识别都是没问题的,大体来说结果还算可以

源码及文件请查看:https://github.com/jvyou/Bank-card-number-identification

效果演示请查看:https://www.bilibili.com/video/BV1hK421C7Bk/?spm_id_from=333.999.0.0&vd_source=ea64b940c4e46744da2aa737dca8e183

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2777399.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Swift Combine 使用 sink, assign 创建一个订阅者 从入门到精通九

Combine 系列 Swift Combine 从入门到精通一Swift Combine 发布者订阅者操作者 从入门到精通二Swift Combine 管道 从入门到精通三Swift Combine 发布者publisher的生命周期 从入门到精通四Swift Combine 操作符operations和Subjects发布者的生命周期 从入门到精通五Swift Com…

Java集合框架(包装类、泛型)

前言&#xff1a; 本篇文章我们来讲解Java中的集合框架&#xff0c;就相当于车轮子。Java是面向对象的语言&#xff0c;所以相对于C语言有自身优势&#xff0c;就比如现成的数据结构&#xff08;比如栈&#xff0c;队列&#xff0c;堆等&#xff09;。Java的集合框架大家也不用…

使用AI开发一个红包封面生成器

使用 VUE3&#xff0c;和 Express 开发一个红包封面。 生成效果如下 体验地址&#xff1a;https://hongbao.digitalmodel.top/

Web Services 服务 是不是过时了?创建 Web Services 服务实例

Web Services 是不是过时了&#xff1f; 今天是兔年最后一天&#xff0c;先给大家拜个早年 。 昨天上午视频面试一家公司需要开发Web Services 服务&#xff0c;这个也没有什么&#xff0c;但还需要用 VB.net 开发。这个是多古老的语言了&#xff0c;让我想起来了 10年 前 写 …

无人机应用场景和发展趋势,无人机技术的未来发展趋势分析

随着科技的不断发展&#xff0c;无人机技术也逐渐走进了人们的生活和工作中。无人机被广泛应用于很多领域&#xff0c;例如遥感、民用、军事等等。本文将围绕无人机技术的应用场景和发展趋势&#xff0c;从多角度展开分析。 无人机技术的应用场景 无人机在遥感方面的应用&…

C++之RTTI实现原理

相关系列文章 C无锁队列的原理与实现 如何写出高质量的函数&#xff1f;快来学习这些coding技巧 从C容器中获取存储数据的类型 C之多层 if-else-if 结构优化(一) C之多层 if-else-if 结构优化(二) C之多层 if-else-if 结构优化(三) C之Pimpl惯用法 C之RTTI实现原理 目录 1.引言…

Swift Combine 使用 dataTaskPublisher 发起网络请求 从入门到精通十

Combine 系列 Swift Combine 从入门到精通一Swift Combine 发布者订阅者操作者 从入门到精通二Swift Combine 管道 从入门到精通三Swift Combine 发布者publisher的生命周期 从入门到精通四Swift Combine 操作符operations和Subjects发布者的生命周期 从入门到精通五Swift Com…

旅游|基于Springboot的旅游管理系统设计与实现(源码+数据库+文档)

旅游管理系统目录 目录 基于Springboot的旅游管理系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、用户管理 2、景点分类管理 3、景点信息管理 4、酒店信息管理 5、景点信息 6、游记分享管理 四、数据库设计 1、实体ER图 2、具体的表设计如下所示&#xf…

【从Python基础到深度学习】4. Linux 常用命令

1.配置root用户密码 root用户为系统默认最高权限用户&#xff0c;其他用户密码修改命令与root用户修改密码命令相同 sudo passwd root 2.添加用户&#xff08;henry&#xff09; sudo useradd -m henry -s /bin/bash 3.配置henry用户密码 Xshell下连接新用户&#xff08;hen…

小巨人大爆发:紧凑型大型语言模型效率之谜揭晓!

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

图像处理常用算法—6个算子 !!

目录 前言 1、Sobel 算子 2、Isotropic Sobel 算子 3、Roberts 算子 4、Prewitt 算子 5、Laplacian算子 6、Canny算子 前言 同图像灰度不同&#xff0c;边界处一般会有明显的边缘&#xff0c;利用此特征可以分割图像。 需要说明的是&#xff1a;边缘和物体间的边界并不…

Django问题报错:TypeError: as_view() takes 1 positional argument but 2 were given

一、错误位置 from django.urls import pathfrom users_app.views import RegisterView, LoginView, LogoutViewapp_name users urlpatterns [path("register/", RegisterView.as_view, name"register"),path("login/", LoginView.as_view, n…

机器学习---学习与推断,近似推断、话题模型

1. 学习与推断 基于概率图模型定义的分布&#xff0c;能对目标变量的边际分布&#xff08;marginal distribution&#xff09;或某些可观测变量 为条件的条件分布进行推断。对概率图模型&#xff0c;还需确定具体分布的参数&#xff0c;称为参数估计或学习问 题&#xff0c;…

读千脑智能笔记08_人工智能的未来(下)

1. 机器智能存在的风险 1.1. “人工智能”这个名字应用到几乎所有涉及机器学习的领域 1.2. 技术专家对人工智能的态度也从“人工智能可能永远不会实现”快速转变为“人工智能可能在不久的将来毁灭所有人类” 1.3. 每一项新技术都可能会被滥用…

专业课135+总分400+西安交通大学815/909信号与系统考研电子信息与通信工程,真题,大纲,参考书。

经过将近一年的考研复习&#xff0c;终于梦圆西安交大&#xff0c;今年专业可815(和909差不多)信号与系统135&#xff0c;总分400&#xff0c;回想这一年的复习还是有很多经验和大家分享&#xff0c;希望可以对大家复习有所帮助&#xff0c;少走弯路。 专业课&#xff1a; 这…

18:蜂鸣器

蜂鸣器 1、蜂鸣器的介绍2、编程让蜂鸣器响起来3、通过定时控制蜂鸣器4、蜂鸣器发出滴滴声&#xff08;间歇性鸣叫&#xff09; 1、蜂鸣器的介绍 蜂鸣器内部其实是2个金属片&#xff0c;当一个金属片接正电&#xff0c;一个金属片接负电时&#xff0c;2个金属片将合拢&#xff…

大数据应用对企业的价值

目录 一、大数据应用价值 1.1 大数据技术分析 1.2 原有技术场景的优化 1.2.1 数据分析优化 1.2.2 高并发数据处理 1.3 通过大数据构建新需求 1.3.1 智能推荐 1.3.2 广告系统 1.3.3 产品/流程优化 1.3.4 异常检测 1.3.5 智能管理 1.3.6 人工智能和机器学习 二、大数…

【深度学习: ChatGPT 】经验教训:使用 ChatGPT 作为 ML 工程师一天

【深度学习&#xff1a; ChatGPT 】经验教训&#xff1a;使用 ChatGPT 作为 ML 工程师一天 介绍设置过程标杆ChatGPT 做机器学习ChatGPT 能否真正实施这些解决方案&#xff1f;结果结论 TLDR;在最近使用 AI 应用程序 ChatGPT 的用例激增中&#xff0c;我们询问它是否可用于改进…

肯尼斯·里科《C和指针》第12章 使用结构和指针(1)链表

只恨当时学的时候没有读到这本书&#xff0c;&#xff0c;&#xff0c;&#xff0c;&#xff0c;&#xff0c; 12.1 链表 有些读者可能还不熟悉链表&#xff0c;这里对它作一简单介绍。链表(linked list)就一些包含数据的独立数据结构&#xff08;通常称为节点&#xff09;的集…

【数学建模】【2024年】【第40届】【MCM/ICM】【A题 七鳃鳗性别比与资源可用性】【解题思路】

我们通过将近半天的搜索数据&#xff0c;查到了美国五大湖中优势物种的食物网数据&#xff0c;以Eric伊利湖为例&#xff0c;共包含34各优势物种&#xff0c;相互之间的关系如下图所示&#xff1a; 一、题目 &#xff08;一&#xff09; 赛题原文 2024 MCM Problem A: Reso…