小巨人大爆发:紧凑型大型语言模型效率之谜揭晓!

 每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

在自然语言处理(NLP)这个飞速发展的领域里,大型语言模型(LLM)的出现无疑是一场革命。这些模型在各种任务上展现出了惊人的能力,不需要特定的训练就能理解和生成接近人类的文本。然而,这些模型要在现实世界中部署,往往会因为对计算资源的巨大需求而受阻。这一挑战促使研究人员开始探索更小、更紧凑的LLM在任务上的效能,比如在会议总结这种对性能和资源利用平衡尤为重要的任务上。

传统上,文本总结,尤其是会议记录的总结,依赖于需要大量标注数据集和巨大计算力进行训练的模型。虽然这些模型取得了令人印象深刻的成果,但由于操作成本高昂,它们的实际应用受到了限制。有鉴于此,最近的一项研究探讨了更小的LLM是否能成为大型模型的可行替代品。这项研究聚焦于会议总结的工业应用,比较了经过微调的紧凑型LLM(如FLAN-T5、TinyLLaMA和LiteLLaMA)与零次训练的大型LLM的性能。

研究方法严谨,使用了一系列紧凑型和大型LLM进行了广泛评估。紧凑型模型在特定数据集上进行了微调,而大型模型则以零次训练的方式进行了测试,意味着它们没有针对手头的任务进行特定训练。这种方法允许直接比较模型准确和高效总结会议内容的能力。

令人注目的是,研究结果表明,特定的紧凑型LLM(尤其是FLAN-T5)在会议总结方面的性能可以匹配甚至超过大型LLM。FLAN-T5拥有780M的参数,展现出的结果与参数范围从7B到超过70B的大型LLM相当甚至更优。这一发现表明,紧凑型LLM有潜力提供一个成本效益高的NLP应用解决方案,实现性能与计算需求之间的最佳平衡。

性能评估突出了FLAN-T5在会议总结任务中的卓越能力。例如,FLAN-T5的性能与许多大型零次训练LLM相当,甚至更好,凸显了其效率和有效性。这一结果突显了紧凑型模型在现实世界设置中部署NLP解决方案的潜力,特别是在计算资源有限的情况下。

总之,对于会议总结任务而言,探索紧凑型LLM的可行性揭示了充满希望的前景。像FLAN-T5这样的模型表现出色,表明小型LLM能够发挥出色的性能,提供一个与大型模型相比的可行选择。这一突破对于NLP技术的部署具有重大意义,标志着一个效率与性能并行前进的新方向。随着该领域的持续发展,紧凑型LLM在桥接前沿研究与实际应用之间的差距无疑将成为未来研究的焦点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2777387.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

图像处理常用算法—6个算子 !!

目录 前言 1、Sobel 算子 2、Isotropic Sobel 算子 3、Roberts 算子 4、Prewitt 算子 5、Laplacian算子 6、Canny算子 前言 同图像灰度不同,边界处一般会有明显的边缘,利用此特征可以分割图像。 需要说明的是:边缘和物体间的边界并不…

Django问题报错:TypeError: as_view() takes 1 positional argument but 2 were given

一、错误位置 from django.urls import pathfrom users_app.views import RegisterView, LoginView, LogoutViewapp_name users urlpatterns [path("register/", RegisterView.as_view, name"register"),path("login/", LoginView.as_view, n…

机器学习---学习与推断,近似推断、话题模型

1. 学习与推断 基于概率图模型定义的分布,能对目标变量的边际分布(marginal distribution)或某些可观测变量 为条件的条件分布进行推断。对概率图模型,还需确定具体分布的参数,称为参数估计或学习问 题,…

读千脑智能笔记08_人工智能的未来(下)

1. 机器智能存在的风险 1.1. “人工智能”这个名字应用到几乎所有涉及机器学习的领域 1.2. 技术专家对人工智能的态度也从“人工智能可能永远不会实现”快速转变为“人工智能可能在不久的将来毁灭所有人类” 1.3. 每一项新技术都可能会被滥用…

专业课135+总分400+西安交通大学815/909信号与系统考研电子信息与通信工程,真题,大纲,参考书。

经过将近一年的考研复习,终于梦圆西安交大,今年专业可815(和909差不多)信号与系统135,总分400,回想这一年的复习还是有很多经验和大家分享,希望可以对大家复习有所帮助,少走弯路。 专业课: 这…

18:蜂鸣器

蜂鸣器 1、蜂鸣器的介绍2、编程让蜂鸣器响起来3、通过定时控制蜂鸣器4、蜂鸣器发出滴滴声(间歇性鸣叫) 1、蜂鸣器的介绍 蜂鸣器内部其实是2个金属片,当一个金属片接正电,一个金属片接负电时,2个金属片将合拢&#xff…

大数据应用对企业的价值

目录 一、大数据应用价值 1.1 大数据技术分析 1.2 原有技术场景的优化 1.2.1 数据分析优化 1.2.2 高并发数据处理 1.3 通过大数据构建新需求 1.3.1 智能推荐 1.3.2 广告系统 1.3.3 产品/流程优化 1.3.4 异常检测 1.3.5 智能管理 1.3.6 人工智能和机器学习 二、大数…

【深度学习: ChatGPT 】经验教训:使用 ChatGPT 作为 ML 工程师一天

【深度学习: ChatGPT 】经验教训:使用 ChatGPT 作为 ML 工程师一天 介绍设置过程标杆ChatGPT 做机器学习ChatGPT 能否真正实施这些解决方案?结果结论 TLDR;在最近使用 AI 应用程序 ChatGPT 的用例激增中,我们询问它是否可用于改进…

肯尼斯·里科《C和指针》第12章 使用结构和指针(1)链表

只恨当时学的时候没有读到这本书,,,,,, 12.1 链表 有些读者可能还不熟悉链表,这里对它作一简单介绍。链表(linked list)就一些包含数据的独立数据结构(通常称为节点)的集…

【数学建模】【2024年】【第40届】【MCM/ICM】【A题 七鳃鳗性别比与资源可用性】【解题思路】

我们通过将近半天的搜索数据,查到了美国五大湖中优势物种的食物网数据,以Eric伊利湖为例,共包含34各优势物种,相互之间的关系如下图所示: 一、题目 (一) 赛题原文 2024 MCM Problem A: Reso…

704. Binary Search(二分查找)

题目描述 给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。 问题分析 确定左右界,然后按规则进行更新即可 代…

H12-821_73

73.某台路由器Router LSA如图所示,下列说法中错误的是? A.本路由器的Router ID为10.0.12.1 B.本路由器为DR C.本路由器已建立邻接关系 D.本路由器支持外部路由引入 答案:B 注释: LSA中的链路信息Link ID,Data&#xf…

Linux探秘:如何用 find 命令发现隐藏的宝藏

🌟🌌 欢迎来到知识与创意的殿堂 — 远见阁小民的世界!🚀 🌟🧭 在这里,我们一起探索技术的奥秘,一起在知识的海洋中遨游。 🌟🧭 在这里,每个错误都…

python 爬虫篇(3)---->Beautiful Soup 网页解析库的使用(包含实例代码)

Beautiful Soup 网页解析库的使用 文章目录 Beautiful Soup 网页解析库的使用前言一、安装Beautiful Soup 和 lxml二、Beautiful Soup基本使用方法标签选择器1 .string --获取文本内容2 .name --获取标签本身名称3 .attrs[] --通过属性拿属性的值标准选择器find_all( name , at…

动漫风博客介绍页面源码

动漫风博客介绍页面源码,HTML源码,图片背景有淡入切换特效 蓝奏云:https://wfr.lanzout.com/iIDZu1nrmjve

Web前端框架-Vue(初识)

文章目录 web前端三大主流框架**1.Angular****2.React****3.Vue**什么是Vue.js 为什么要学习流行框架框架和库和插件的区别一.简介指令v-cloakv-textv-htmlv-pre**v-once**v-onv-on事件函数中传入参数事件修饰符双向数据绑定v-model 按键修饰符自定义按键修饰符别名v-bind(属性…

RocketMQ生产常见问题

RocketMQ如何保证消息不丢失 1、哪些环节会有丢消息的可能? 其中,1,2,4三个场景都是跨网络的,而跨网络就肯定会有丢消息的可能。关于3这个环节,通常MQ存盘时都会先写入操作系统的缓存page cache中&#xf…

Python中的正则表达式(一)

在Python中,正则表达式是一种用于匹配和操作字符串的强大工具。正则表达式由一系列字符和特殊字符组成,用于定义搜索模式。 在Python中,我们使用内置的 re 模块来操作正则表达式。要使用正则表达式,我们首先需要导入 re 模块。 下…

Android SystemConfig相关

SystemConfig在哪里初始化 它声明在PackageManagerService类的静态方法main()中。在该方法中间定义Injector类对象时,作为它的构造参数。它是调用的SystemConfig.getInstance()实现初始化,之后能通过Injector类对象的getSystemConfig()得到SystemConfig类…

每日五道java面试题之java基础篇(三)

第一题. switch 是否能作⽤在 byte/long/String 上? Java5 以前 switch(expr)中,expr 只能是 byte、short、char、int。从 Java 5 开始,Java 中引⼊了枚举类型, expr 也可以是 enum 类型。从 Java 7 开始,expr 还可以…