基于图像掩膜和深度学习的花生豆分拣(附源码)

目录

项目介绍

图像分类网络构建

处理花生豆图片完成预测


项目介绍

这是一个使用图像掩膜技术和深度学习技术实现的一个花生豆分拣系统

我们有大量的花生豆图片,并以及打好了标签,可以看一下目录结构和几张具体的图片

 

同时我们也有几张大的图片,里面有若干花生豆,我们要做的任务就是将花生豆框住并且实现分类,可以看一下这些图片 

图像分类网络构建

这部分的内容和我上一篇博客几乎大同小异,就是把最后的分类个数和类别映射换了换,掌握了上一个项目,这部分相信也会理解的很快,这里附上网址并做简单的回顾

kaggle实战图像分类-Intel Image Classification(附源码)-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/weixin_62428212/article/details/136059443?spm=1001.2014.3001.5501

1,数据集加载

2,构建网络

3,定义超参数训练网络

这里小编使用的是resnet18这个网络,因为花生豆数据集的训练,一不小心就会过拟合,用一些更深更强的网络很容易导致过拟合,resnet18好像也有点过拟合,这里附上训练结果图片

处理花生豆图片完成预测

我们训练好网络后,并不能直接将网络用于预测整个花生豆的大图,因为里面有很多的花生豆,所以我们可以取出并预测,那么怎么单独取出来呢,这里用到了掩膜用以分割花生豆(一些注释写在了代码里)

首先导入相应的库和定义一下参数

# -*- coding: GB2312 -*-
import os
import cv2
import numpy as np
import torch
from PIL import Image
from utils.model import ResNet18
from torchvision import transformspath = 'data/pic'
image_path = os.listdir(path)classify = {0: 'baiban', 1: 'bandian', 2: 'famei', 3: 'faya', 4: 'hongpi', 5: 'qipao', 6: 'youwu', 7: 'zhengchang'}transform = transforms.Compose([transforms.Resize((64, 64)),transforms.ToTensor()])net = ResNet18(8)
net.load_state_dict(torch.load('model_weights/ResNet18.pth'))min_size = 30
max_size = 400

然后我们加载整个大图的文件夹并遍历处理每张图片

for i in image_path:img = cv2.imread(os.path.join(path,i))hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)  # 转HSV色彩空间# 定义背景颜色区间(蓝色区间)lower_blue = np.array([100, 100, 8])upper_blue = np.array([255, 255, 255])mask = cv2.inRange(hsv, lower_blue, upper_blue)  # 创建掩膜(在上述颜色范围内(背景)为白色,不在(花生豆)则为黑色)result = cv2.bitwise_and(img, img, mask=mask)  # 根据掩膜提取图像,会将花生豆的部分变为黑色,然后提取出背景部分result = result.astype(np.uint8)_, binary_image = cv2.threshold(result, 1, 255, cv2.THRESH_BINARY)  # 三通道二值化。背景会全为白色,花生豆部分为黑色# 到这里我们就得到了经过掩膜过滤的图片,其中白色的为背景,黑色的为花生豆,我们可以看一下cv2.namedWindow('HSV_Result', cv2.WINDOW_NORMAL)cv2.resizeWindow('HSV_Result', 2840, 1000)cv2.imshow('HSV_Result', binary_image)cv2.waitKey(0)cv2.destroyAllWindows()

我们发现这些花生豆的背景是蓝色的,所以我们创建了一个用以区分背景和花生豆的掩膜用来分割二者,其分割完后的图片为

通过掩膜处理完后,我们可以清晰的观察到图片里的花生豆,后面我们就可以在这幅图片上画出轮廓并分割出花生豆部分依次放入网络预测

# 过滤边框
def delet_contours(contours, delete_list):delta = 0for i in range(len(delete_list)):del contours[delete_list[i] - delta]delta = delta + 1return contoursinverted_image = cv2.cvtColor(binary_image, cv2.COLOR_BGR2GRAY)  # 转灰度图_, binary_image = cv2.threshold(inverted_image, 1, 255, cv2.THRESH_BINARY)  # 单通道二值化contours, hierarchy = cv2.findContours(binary_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)contours = list(contours)delete_list = []for i in range(len(contours)):# 通过框的周长去过滤边框if (cv2.arcLength(contours[i], True) < min_size) or (cv2.arcLength(contours[i], True) > max_size):delete_list.append(i)contours = delet_contours(contours, delete_list)# 遍历每一个框(取出每一个单独的花生豆进行预测)for i in range(len(contours)):x, y, w, h = cv2.boundingRect(contours[i])img_pred = img[y:y+h, x:x+w, :]img_pred = Image.fromarray(img_pred)  # 将numpy数组转为PIL图像对象img_pred = transform(img_pred)  # 调整图像尺寸和转tensor格式img_pred = torch.unsqueeze(img_pred, dim=0)  # 升一个维度pred = torch.argmax(net(img_pred), dim=1)  # 拿到概率最大的分类preds = classify[int(pred)]  # 数字映射为字符串cv2.putText(img, preds, (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 1, cv2.LINE_AA)  # 写类别标签cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2)  # 画矩形框cv2.namedWindow('Result', cv2.WINDOW_NORMAL)cv2.resizeWindow('Result',2840,1000)cv2.imshow('Result', img)cv2.waitKey(0)cv2.destroyAllWindows()

展示一下预测结果

小编这里发现这个方法可以预测成功中间大多数的花生豆,但是边缘处的花生豆因不会被画出轮廓故不会被放入网络预测,大体预测的效果还算可以。

源码及数据集请查看:https://github.com/jvyou/Peanut-and-bean-sorting

视频讲解请查看:https://www.bilibili.com/video/BV13F4m1g7Wp/?spm_id_from=333.999.0.0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/2777261.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

第五章:变换矩阵

本文是《从0开始图形学》笔记的第五章&#xff0c;初步介绍变换矩阵的作用和求解方式&#xff0c;通过本章内容&#xff0c;我们将掌握模型的旋转和移动。 矩阵的初认识 图形学自然避不开矩阵&#xff0c;矩阵为点坐标的变换提供了一个优雅简洁的处理方案。简单来说&#xff0…

kubernetes镜像仓库harbor

一、镜像仓库的种类 GitHub GitHub有付费版和免费版,目前默认的docker镜像拉取策略是从GitHub上进行拉取gitee 国内harbor私有仓库二、harbor仓库规划设计 私有镜像仓库 Harbor 安装和配置 新创建一台虚拟机安装harbor, 配置如下: 主机名ip配置网络harbor192.168.1.204VCPU/…

【数据库】索引的使用

【数据库】索引的使用 前言出发示例创建表Explain 查看sql执行计划where 查询解析无索引有索引 where oderBy 查询解析无索引有索引 总结 前言 在数据库设计过程中&#xff0c;常需要考虑性能&#xff0c;好的设计可以大大提高sql 语句的增删改查速度。在表的创建过程中&…

【linux温故】CFS调度

写在前面 网上关于CFS 调度器的文章多如牛毛&#xff0c;没必要自己写。很多文章写的都非常好。 很多文章里&#xff0c;关键的技术点&#xff0c;都是一样的&#xff0c;只是各个文章说法不一样。 掌握了核心的&#xff0c;关键的&#xff0c;其他的&#xff0c;如果工作中…

【5G NR】【一文读懂系列】移动通讯中使用的信道编解码技术-卷积码原理

目录 一、引言 二、卷积编码的发展历史 2.1 卷积码的起源 2.2 主要发展阶段 2.3 重要里程碑 三、卷积编码的基本概念 3.1 基本定义 3.2 编码器框图 3.3 编码多项式 3.4 网格图(Trellis)描述 四、MATLAB示例 一、引言 卷积编码&#xff0c;作为数字通信领域中的一项…

C++,stl,栈stack和队列queue详解

1.栈stack 1.stack基本概念 2.stack常用接口 代码示例&#xff1a; #include<bits/stdc.h> using namespace std;int main() {stack<int> stk;stk.push(7);stk.push(9);stk.push(5);cout << "栈的size为&#xff1a;" << stk.size() <…

机器学习系列——(十九)层次聚类

引言 在机器学习和数据挖掘领域&#xff0c;聚类算法是一种重要的无监督学习方法&#xff0c;它试图将数据集中的样本分组&#xff0c;使得同一组内的样本相似度高&#xff0c;不同组间的样本相似度低。层次聚类&#xff08;Hierarchical Clustering&#xff09;是聚类算法中的…

2.7日学习打卡----初学RabbitMQ(二)

2.7日学习打卡 JMS 由于MQ产品很多&#xff0c;操作方式各有不同&#xff0c;于是JAVA提供了一套规则 ——JMS&#xff0c;用于操作消息中间件。JMS即Java消息服务 &#xff08;JavaMessage Service&#xff09;应用程序接口&#xff0c;是一个Java平台中关于面 向消息中间件的…

Spring Boot整合MyBatis Plus实现基本CRUD与高级功能

文章目录 1. 引言2. 项目搭建与依赖配置2.1 添加MyBatis Plus依赖2.2 配置数据源与MyBatis Plus 3. 实现基本CRUD功能3.1 创建实体类3.2 创建Mapper接口3.3 实现Service层3.4 控制器实现 4. 高级功能实现4.1 自动填充功能4.2 乐观锁功能4.3 逻辑删除功能 5. 拓展&#xff1a;My…

EasyExcel操作Excel表格

一、EasyExcel介绍 1.1 介绍 EasyExcel 是一个基于 Java 的简单易用的 Excel 文件读写工具&#xff0c;它提供了一种简单而又高效的方式来读取、写入和操作 Excel 文件。EasyExcel 是阿里巴巴开源的项目&#xff0c;它旨在简化开发人员处理 Excel 文件的流程&#xff0c;使得…

【漏洞复现】狮子鱼CMS某SQL注入漏洞01

Nx01 产品简介 狮子鱼CMS&#xff08;Content Management System&#xff09;是一种网站管理系统&#xff0c;它旨在帮助用户更轻松地创建和管理网站。该系统拥有用户友好的界面和丰富的功能&#xff0c;包括页面管理、博客、新闻、产品展示等。通过简单直观的管理界面&#xf…

【JavaScript 漫游】【013】Date 对象知识点摘录

文章简介 本文为【JavaScript 漫游】专栏的第 013 篇文章&#xff0c;记录了 JS 语言中 Date 对象的重要知识点。 普通函数的用法构造函数的用法日期的运算静态方法&#xff0c;包括&#xff1a;Date.now()、Date.parse() 和 Date.UTC()实例方法&#xff0c;包括&#xff1a;…

初识文件包含漏洞

目录 什么是文件包含漏洞&#xff1f; 文件包含的环境要求 常见的文件包含函数 PHP伪协议 file://协议 php://协议 php://filter php://input zip://、bzip2://、zlib://协议 zip:// bzip2:// zlib:// data://协议 文件包含漏洞演示 案例1&#xff1a;php://inp…

使用 Elasticsearch 和 OpenAI 构建生成式 AI 应用程序

本笔记本演示了如何&#xff1a; 将 OpenAI Wikipedia 向量数据集索引到 Elasticsearch 中使用 Streamlit 构建一个简单的 Gen AI 应用程序&#xff0c;该应用程序使用 Elasticsearch 检索上下文并使用 OpenAI 制定答案 安装 安装 Elasticsearch 及 Kibana 如果你还没有安装好…

静态时序分析:工艺库的特征化条件和工作条件

相关阅读 静态时序分析https://blog.csdn.net/weixin_45791458/category_12567571.html?spm1001.2014.3001.5482 一个工艺库(technology library) 会指定该库的特征化条件(characterization condition)和工作条件(operating condition)。一般在工艺库的开头会看见以下信息。 …

5.1 灯光色彩与视觉

5.1 灯光色彩与视觉 视觉成像 灯光与物体的反应:吸收,反射和折射 色彩:光照到物体上,物体吸收其他光源色,只反射该颜色光,所以物体 表面呈现该颜色 视觉:该颜色光进入人眼刺激感光细胞,并在视网膜上形成影像. ABSORBTION 一、基础灯光 1.环境光&#xff08;Ambient Light…

电商小程序05用户注册

目录 1 搭建页面2 设置默认跳转总结 我们上一篇拆解了登录功能&#xff0c;如果用户没有账号就需要注册了。本篇我们介绍一下注册功能的实现。 1 搭建页面 打开应用&#xff0c;点击左上角的新建页面 输入页面的名称&#xff0c;用户注册 删掉网格布局&#xff0c;添加表单容…

华为OD机试 - 智能成绩表( Python C C++ JavaGo JS PHP)

题目描述 小明是一名新老师&#xff0c;他需要将学生按考试总分或单科分数进行排名。学生的信息包括姓名、科目和对应的分数。帮助小明完成这个任务吧&#xff01; 输入描述 第一行包含两个整数 n 和 m&#xff0c;分别代表学生人数和科目数量。 0 < n < 1000 < m &…

【Makefile语法 01】程序编译与执行

目录 一、编译原理概述 二、编译过程分析 三、编译动静态库 四、执行过程分析 一、编译原理概述 make&#xff1a; 一个GCC工具程序&#xff0c;它会读 makefile 脚本来确定程序中的哪个部分需要编译和连接&#xff0c;然后发布必要的命令。它读出的脚本&#xff08;叫做 …

Mysql Day03

多表设计 一对多 在多的一方添加外键约束&#xff0c;关联另外一方主键 一对一 任意一方添加外键约束&#xff0c;关联另外一方主键 多对多 建立第三张中间表&#xff0c;中间表至少包含两个外键&#xff0c;分别关联两方主键 idstu_idcourse_id 1 11 2 12313421524 案…