读数据压缩入门笔记03_VLC

 

1. 概率、熵与码字长度

1.1. 数据压缩的目的

1.1.1. 给定一个数据集中的符号,将最短的编码分配给最可能出现的符号

1.2

 

1.2.1. 当P(A)=P(B),也就是两个符号等可能出现时,数据集对应的熵取最大值LOG2(符号的个数),此时数据集很难压缩

1.2.2. 其中一个符号出现的可能越大,数据集的熵值就越小,此时数据集也越容易压缩

1.2.3. 对只包含两个符号的数据集来说,两个符号互换概率不影响其熵值

1.3. 启示

1.3.1. 随着数据集的冗余度下降,它的熵在变大,其最大值为数据集中不同符号个数的LOG2值

1.3.2. 数据集中一个符号出现的概率越大,整个数据集的熵就越小,数据集也就越容易压缩

1.3.3. 码字的长度与符号的出现概率密切相关,而与符号本身没有太大关系

2. VLC算法

2.1. 在过去的40多年中,人们创造了数百种VLC算法

2.2. 在为数据集选择一种VLC编码方法的考虑因素

2.2.1. 数据集的整体大小

2.2.2. 数据范围

2.2.3. 计算各个符号的出现概率

2.2.4. 如果不这样做,得到的结果可能就是,数据集的大小不但没有压缩,有可能反而比原来的数据集还大

2.3. 存在的主要问题

2.3.1. 它们不按字节 / 字 / 整型对齐

2.3.2. 对于大的数值N,为了方便解码,其码字长度的增长速度一般会超过lb(N)个二进制位

2.3.3. 解码的速度很慢(每次只能读取一个二进制位)

2.3.4. 只能用于表示压缩数据流,没有其他应用

3. 设计VLC集的码字原则

3.1. 越频繁出现的符号,其对应的码字越短

3.2. 码字需满足前缀性质

4. 前缀性质

4.1. 如果一个码字是另一个码字的前缀,那么用VLC解码二进制流就会很难

4.2. 某个码字被分配给一个符号之后,其他的码字就不能用该码字作为前缀

4.2.1. 每个符号都能通过其码字前缀唯一地确定

4.3. 前缀性质是VLC能正常工作所必须具有的性质

4.3.1. 与二进制表示相比,VLC要更长一些

5. 唯一可译码

5.1. uniquely decodable codes

6. 非奇异码

6.1. nonsingular codes

7. 每一种前缀编码都是唯一可译的和非奇异的

8. VLC编码步骤

8.1. 遍历数据集中的所有符号并计算每个符号的出现概率

8.1.1. 画出数据集中所有符号的直方图

8.2. 根据概率为每个符号分配码字,一个符号出现的概率越大,所分配的码字就越短

8.2.1. 根据出现的频数对直方图进行排序

8.2.2. 给每个符号分配一个VLC,从VLC集中码字最短的开始

8.3. 再次遍历数据集,对每一个符号进行编码,并将对应的码字输出到压缩后的数据流中

9. VLC解码步骤

9.1. 由于码字的长度并非是固定的,因此解码过程还是稍微有些复杂

9.2. 解码的时候,我们会一二进制位一二进制位地读取数据,直到读取的二进制位流与其中的某个码字相匹配

9.3. 一旦匹配,就会输出相应的符号,并继续读取下一个码字

10. 摩尔斯码

10.1. 1836年

10.1.1. 画家Samuel F. B. Morse

10.1.2. 物理学家Joseph Henry

10.1.3. 机械师Alfred Vail

10.1.4. 发明了第一套电报系统

10.2. 克劳德•香农

10.2.1. 摩尔斯码方面的专家

10.3. 最简单的编码文本信息的方法

10.3.1. 用数字126来编码AZ的英文字母

10.4. 发送一次信息所需要的人工操作次数太多

10.4.1. 物理硬件(发报机设备)和人工硬件(也就是操作人员的手腕)的磨损比预期的要快,解决方法则是使用统计来减少工作量

10.5. 对符号分配变长编码(variable-length codes,VLC)的最初实现之一

10.6. 为英语字母表中的每一个字符都分配了或长或短的脉冲,一个字母用得越频繁,其编码也就越短、越简单

10.6.1. 目的则在于减少传输信息过程中所需要的总工作量

11. 通用编码

11.1. universal codes

11.2. 一种将整数转换为VLC的独特方法

11.3. 一类特殊的前缀编码

11.4. 为正整数赋上一个长度可变的二进制码字

11.5. 数值越小,其对应的码字也越短

11.5.1. 因为假定小整数比大整数出现得更频繁

12. 二进制编码

12.1. 不满足前缀性质

12.2. 用B(n)来表示整数n的标准二进制表示

12.3. beta编码或二进制编码

12.4. 给定0~N的任意整数,都能用1+floor(lb(n))个二进制位来表示

12.4.1. 只要提前知道N的值,就能通过固定长度表示法来避开前缀问题

12.4.2. 如果不能提前知道数据集中有多少个不同的整数,就不能用固定长度表示法

13. 一元码

13.1. 满足前缀性质

13.2. 任意正整数N,它的一元码表示都是N-1个1后面跟着1个0

13.2.1. 4的一元码表示为1110

13.3. 整数N的一元码长度也是N个二进制位

13.4. 将一元码应用在那些前一个符号的出现概率是后一个符号2倍的数据集上,效果最佳

13.5. 如果每个整数N的出现概率P(N)服从指数分布2^(-N),即1/2、1/4、1/8、1/16、1/32,其他以此类推,就可以使用一元码进行编码

14. Peter Elias

14.1. 1923年11月23日生

14.2. 1955年,他就引入了卷积码(convolutional codes),作为分组码(block codes)的一种替代方法

14.3. 建立了二进制删除信道(binary erasure channel),并提出了用纠错码的列表译码(list decoding of error-correcting codes)来代替唯一可译码(unique decoding)

14.4. Elias gamma编码

14.4.1. 用于事先无法确定其上界的整数的编码

14.4.1.1. 不知道最大的整数会是多大

14.4.2. 对整数n的出现概率P(n)=1/(2n*n)的情形比较适用

14.4.3. 最主要的思想是不再对整数直接编码,而是用其数量级作为前缀

14.4.3.1. 相应的码字就由两部分组成,即与此整数相当的2的次幂再加上余数

14.4.4. 工作原理

14.4.4.1. 找出最大的整数N,使其满足2^N<n<2^(N+1),并且将n表示为n=2^N+L这样的形式

14.4.4.1.1. L=n-2^N

14.4.4.1.2. n=12,2^3=8,2^4=16,2^3<n<2^4,N=3

14.4.4.1.3. L=12-2^3=4

14.4.4.2. 用一元码表示N

14.4.4.2.1. N=3,一元码110

14.4.4.3. 将L表示为长为N的二进制编码,并加在步骤(2)中得出的一元码之后

14.4.4.3.1. 有了这样的对称性,后面才能顺利解码

14.4.4.3.2. L=4,其对应的长度为3的二进制码为100

14.4.4.3.3. 将前两个步骤得出的编码连接,就得到了最终的输出110100

14.5. Elias delta编码

14.5.1. 对整数N的出现概率P(N)等于1/[2n(lb(2n)*lb(2n))的数据集来说是理想的选择

14.5.2. 工作原理

14.5.2.1. 将要编码的数N用二进制表示

14.5.2.1.1. 将N=12表示为二进制1100

14.5.2.2. 数一下N的二进制位数,并将这个位数转化为二进制,作为C

14.5.2.2.1. 12的二进制表示共有4位,将4表示为二进制,即C = 100

14.5.2.3. 去掉N的二进制表示的最左边一位,这个值肯定是1

14.5.2.3.1. 去掉N=12的二进制表示的最左一位,得到100

14.5.2.4. 将C的二进制表示加在去掉最左边一位后的N的二进制表示之前

14.5.2.4.1. 将C = 100加到上一步骤所得的结果之前,得到100100

14.5.2.5. 在上一步骤所得的结果前加上C的二进制位数减1个0作为最终的编码

14.5.2.5.1. 将C的二进制位数减1,即3-1 = 2,在上一步骤所得的结果前加上2个0,由此得到12的最终编码为00100100

15. 谷歌的Varint算法

15.1. 最基本的概念早在1972年就提出

15.2. 2010年作为“避免压缩整数”(escaping for compressed integers)而被重新引入

15.3. 是一种表示整数的方法,它用一个或多个字节来表示一个整数,数值越小用的字节数越少,数值越大用的字节数越多

15.3.1. 结合了VLC的灵活性和现代计算机体系结构的高效率,是一种很好的混合方法

15.3.2. 既允许我们表示可变范围内的整数,同时还对自身的数据进行了对齐以提高解码的效率,达到了双赢

15.4. 方法

15.4.1. 将几个字节连接起来表示整数

15.4.2. 并用每个字节的MSB作为布尔标志,来判断当前的字节是否为该整数的最后一个字节

15.4.3. 每个字节的低7位则用来存储该数的二进制补码(two's complement representation)

15.4.4. 整数1可以用一个字节表示,因此它的MSB不需要设置,可表示为00000001

15.5. 示例

15.5.1. 10101100 00000010

15.5.1.1. 10101100 00000010 → 0101100 0000010

15.5.1.1.1. 删掉每个字节的MSB

15.5.1.1.1.1. 它的作用只是判断当前字节是否是最后一个字节

15.5.1.1.1.2. 第一个字节的MSB已经设置为1,因为用Varint方法来表示,该数需要多个字节

15.5.1.2. 0101100 0000010

15.5.1.2.1. 将剩下的两个7二进制位的数据顺序颠倒一下

15.5.1.2.1.1. 用Varint方法表示时,低位的字节在前

15.5.1.3. 0000010 0101100

15.5.1.3.1. 将二进制表示转换为十进制数,就得到了最终的数值300

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/256585.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

《计算机组成原理》唐朔飞 第7章 指令系统 - 学习笔记

写在前面的话:此系列文章为笔者学习计算机组成原理时的个人笔记,分享出来与大家学习交流。使用教材为唐朔飞第3版,笔记目录大体与教材相同。 网课 计算机组成原理(哈工大刘宏伟)135讲(全)高清_…

HTTPX从入门到放弃

1. 什么是HTTPX? HTTPX是一款Python栈HTTP客户端库,它提供了比标准库更高级别、更先进的功能,如连接重用、连接池、超时控制、自动繁衍请求等等。HTTPX同时也支持同步和异步两种方式,因此可以在同步代码和异步代码中通用。 HTTP…

FPGA纯vhdl实现XGMII接口10G万兆网UDP协议 配合10G Ethernet PCS/PMA使用 提供工程源码和技术支持

目录 1、前言2、我这里已有的UDP方案3、详细设计方案本 10G-UDP 协议栈功能和性能描述本 10G-UDP 协议栈设计框图用户发送AXIS接口描述用户接收AXIS接口描述控制接口描述XGMII接口描述 4、vivado工程详解10G-UDP协议栈10G Ethernet PCS/PMA IP核 5、上板调试验证并演示6、福利&…

iOS 13修复了FaceTime最大的烦恼之一

黑客技术 点击右侧关注,了解黑客的世界! Java开发进阶 点击右侧关注,掌握进阶之路! Linux编程 点击右侧关注,免费入门到精通! iOS 13 第三个开发者 beta 版本增加了一个新功能,可以让用户在 Fac…

多人聊天、预约会议,FaceTime登录Windows和Android系统

整理 | Carol 出品 | CSDN(ID:CSDNnews) 在一年一度的WWDC苹果开发者盛会中,Apple除了宣布引入iOS15以外,还宣布将面向Windows和Android用户开放FaceTime。而过去,这项能力只能在iOS和Mac设备上试用。 Face…

iPhone曝严重漏洞,用户接听FaceTime前或被“监听”!

作者 | 琥珀 出品 | AI科技大本营(ID: rgznai100) 近日,据 9to5Mac 等多家外媒报道,苹果手机 FaceTime 一项重大漏洞被曝光,该漏洞可以让用户通过 FaceTime 群聊功能(Group FaceTime)打电话给任…

黑苹果facetime_如何在消息或FaceTime中添加或删除电话号码

黑苹果facetime If you have an iPhone and a Mac or iPad, you can link your phone number to your iCloud account to send and receive calls and messages from the same number on both devices. 如果您拥有iPhone和Mac或iPad,则可以将电话号码链接到iCloud帐…

苹果 iOS 15 正式发布

本文转载自IT之家 IT之家 6 月 8 日消息 今日凌晨,苹果召开 WWDC21 全球开发者大会,正式公布了全新 iOS 15 系统。 IT之家了解到,在 iOS 15 系统中,苹果带来了全新 FaceTime 与通知界面,并对照片、天气、钱包、地图等…

【苹果imessage相册推信】黑apple苹果经常出现FaceTime群设备推和Imessage群发设备推

黑色苹果经常出现FaceTime和Imessage,无法正常登录。 需要正常登录,你需要提到3码,一些帖子甚至复制在真正的白色苹果机上方。 但实际上,我希望上述服务将正常使用,我们需要补充SMUUID,BoardSerialNumber和…

FaceTime 在苹果电脑macOS与iPhone iOS上视频聊天配置步骤

FaceTime 在macOS与iPhone视频聊天配置步骤 前提,毫无疑问,你要有Apple ID。 1,在苹果电脑,到Applications目录下打开运行FaceTime 2,还是在电脑,输入你的Apple ID 3,还是在电脑,这里…

iMessage, Facetime 解决办法

不需要白苹果三码,亲测可用:原帖地址: https://www.reddit.com/r/hackintosh/comments/2wohwn/getting_imessage_working_on_10102_generating/ 感谢原帖的大神,感谢搜索。如果你得到一个错误信息,那么你很辛运。这意味…

【苹果推软件】安装OS imessage和faceTime

推荐内容IMESSGAE相关 作者推荐内容参考此文档来操作 *** 点击即可查看作者要求内容信息作者推荐内容1.参考此文档来操作 *** 点击即可查看作者要求内容信息作者推荐内容2.参考此文档来操作 *** 点击即可查看作者要求内容信息作者推荐内容3.参考此文档来操作 *** 点击即可查看…

如何解决FaceTime在苹果Mac上不起作用的问题?

由于多种原因,FaceTime无法在Mac上正常工作。在某些情况下,该应用程序行为不正常或将您注销,因此您将无法使用FaceTime。同样,如果您在使用相机或麦克风时遇到问题,Mac的日期和时间不正确,或者互联网连接状…

黑苹果解决 iMessage 与 Facetime 以及苹果三码的问题

教程来自http://www.heimac.net 若有侵权,及时私信我删除本文,再次感谢! 作者:超级管理员 黑苹果经常出现Facetime 和 iMessage 无法正常登陆。需要正常登陆则需要所说的白苹果 3 码,有些帖子甚至已经到真正的白苹果机…

C++ 和机器学习:使用 C++ 执行 ML 任务的简介

C 和机器学习:使用 C 执行 ML 任务的简介 介绍 C 是一种高性能编程语言,非常适合机器学习( ML ) 任务。尽管它在 ML 中可能不像 Python 或 R 那样流行,但它在速度和内存效率方面具有优势。 在本文中,我们将概述使用 C 执行 ML 任务…

【上篇】我们邀请了4位专家来探讨消费市场的新增量:W型机会、单客经济、日本市场、DTC......

好久不见了,我是增长黑盒的创始人yolo。最近我们总是发布一些严肃型的行业报告,相信大家的动作都是在第一时间点个收藏,然后....就没有然后了。 所以,今天我们的内容没有复杂的图表和数据,想用比较轻松的对话形式来呈现…

二、高通相机bringup 流程

和你一起终身学习,这里是程序员Android 经典好文推荐,通过阅读本文,您将收获以下知识点: 一、相机Sensor 点亮相关的文件二、Sensor 驱动文件详解 一、相机Sensor 点亮相关的文件 1.1 Sensor 驱动XML以及CPP文件 Sensor 文件路径:…

react antd Modal里Form设置值不起作用

问题描述: react antd Modal里Form设置值不起作用,即使用form的api。比如:编辑时带出原有的值。 造成的原因:一般设置值都是在声明周期里设置,比如:componentDidMounted里设置,hook则在useEff…

Dockerfile

Docker镜像原理: docker镜像是由特殊的文件系统叠加而成最低端的是boofs,并使用宿主机的bootfs第二层是root文件系统rootfs,称为base image让再往上叠加其他的镜像文件统一文件系统(Union FileSystem)技术能够将不同的层整合成一个文件系统&…

CVPR 2023 | 南大王利民团队提出LinK:用线性核实现3D激光雷达感知任务中的large kernel...

点击下方卡片,关注“CVer”公众号 AI/CV重磅干货,第一时间送达 点击进入—>【Transformer】微信交流群 【CVPR 2023】LinK:用线性核实现3D激光雷达感知任务中的large kernel 本文介绍我们媒体计算研究组(MCG)在3D激…