1,在一平面上放一个立方体
实现代码:
from pylab import *
from PIL import Image# If you have PCV installed, these imports should work
from PCV.geometry import homography, camera
# from PCV.localdescriptors
import sift"""
This is the augmented reality and pose estimation cube example from Section 4.3.
"""def cube_points(c, wid):""" Creates a list of points for plottinga cube with plot. (the first 5 points arethe bottom square, some sides repeated). """p = []# bottomp.append([c[0] - wid, c[1] - wid, c[2] - wid])p.append([c[0] - wid, c[1] + wid, c[2] - wid])p.append([c[0] + wid, c[1] + wid, c[2] - wid])p.append([c[0] + wid, c[1] - wid, c[2] - wid])p.append([c[0] - wid, c[1] - wid, c[2] - wid]) # same as first to close plot# topp.append([c[0] - wid, c[1] - wid, c[2] + wid])p.append([c[0] - wid, c[1] + wid, c[2] + wid])p.append([c[0] + wid, c[1] + wid, c[2] + wid])p.append([c[0] + wid, c[1] - wid, c[2] + wid])p.append([c[0] - wid, c[1] - wid, c[2] + wid]) # same as first to close plot# vertical sidesp.append([c[0] - wid, c[1] - wid, c[2] + wid])p.append([c[0] - wid, c[1] + wid, c[2] + wid])p.append([c[0] - wid, c[1] + wid, c[2] - wid])p.append([c[0] + wid, c[1] + wid, c[2] - wid])p.append([c[0] + wid, c[1] + wid, c[2] + wid])p.append([c[0] + wid, c[1] - wid, c[2] + wid])p.append([c[0] + wid, c[1] - wid, c[2] - wid])return array(p).Tdef my_calibration(sz):"""Calibration function for the camera (iPhone4) used in this example."""row, col = szfx = 2555 * col / 2592fy = 2586 * row / 1936K = diag([fx, fy, 1])K[0, 2] = 0.5 * colK[1, 2] = 0.5 * rowreturn K# compute features
sift.process_image('D:/img/1.jpg', 'im0.sift')
l0, d0 = sift.read_features_from_file('im0.sift')sift.process_image('D:/img/2.jpg', 'im1.sift')
l1, d1 = sift.read_features_from_file('im1.sift')# match features and estimate homography
matches = sift.match_twosided(d0, d1)
ndx = matches.nonzero()[0]
fp = homography.make_homog(l0[ndx, :2].T)
ndx2 = [int(matches[i]) for i in ndx]
tp = homography.make_homog(l1[ndx2, :2].T)model = homography.RansacModel()
H, inliers = homography.H_from_ransac(fp, tp, model)# camera calibration
K = my_calibration((747, 1000))# 3D points at plane z=0 with sides of length 0.2
box = cube_points([0, 0, 0.1], 0.1)# project bottom square in first image
cam1 = camera.Camera(hstack((K, dot(K, array([[0], [0], [-1]])))))
# first points are the bottom square
box_cam1 = cam1.project(homography.make_homog(box[:, :5]))# use H to transfer points to the second image
box_trans = homography.normalize(dot(H, box_cam1))# compute second camera matrix from cam1 and H
cam2 = camera.Camera(dot(H, cam1.P))
A = dot(linalg.inv(K), cam2.P[:, :3])
A = array([A[:, 0], A[:, 1], cross(A[:, 0], A[:, 1])]).T
cam2.P[:, :3] = dot(K, A)# project with the second camera
box_cam2 = cam2.project(homography.make_homog(box))# plotting
im0 = array(Image.open('D:/img/1.JPG'))
im1 = array(Image.open('D:/img/2.JPG'))figure()
imshow(im0)
plot(box_cam1[0, :], box_cam1[1, :], linewidth=3)
title('2D projection of bottom square')
axis('off')figure()
imshow(im1)
plot(box_trans[0, :], box_trans[1, :], linewidth=3)
title('2D projection transfered with H')
axis('off')figure()
imshow(im1)
plot(box_cam2[0, :], box_cam2[1, :], linewidth=3)
title('3D points projected in second image')
axis('off')show()
结果:
图1 图2 图3
使用平面物体作为标记物,来计算用于新视图投影矩阵的例子。将图像的特征和对齐后的标记匹配,计算除单应矩阵,然后用于计算照相机的姿态。将有一个蓝色正方形区域的模板图像(图1),从未知视觉拍摄的一幅图像,该图像包含同一个正方形,该正方形已经经过估计的单应性矩阵进行了变换(图2),使用计算出的照相机矩阵变换立方体(图3)
二,在图像中放置虚拟物体
import math
import pickle
from pylab import *
from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
import pygame, pygame.image
from pygame.locals import *
from PCV.geometry import homography, camera
import siftdef cube_points(c, wid):""" Creates a list of points for plottinga cube with plot. (the first 5 points arethe bottom square, some sides repeated). """p = []# bottomp.append([c[0] - wid, c[1] - wid, c[2] - wid])p.append([c[0] - wid, c[1] + wid, c[2] - wid])p.append([c[0] + wid, c[1] + wid, c[2] - wid])p.append([c[0] + wid, c[1] - wid, c[2] - wid])p.append([c[0] - wid, c[1] - wid, c[2] - wid]) # same as first to close plot# topp.append([c[0] - wid, c[1] - wid, c[2] + wid])p.append([c[0] - wid, c[1] + wid, c[2] + wid])p.append([c[0] + wid, c[1] + wid, c[2] + wid])p.append([c[0] + wid, c[1] - wid, c[2] + wid])p.append([c[0] - wid, c[1] - wid, c[2] + wid]) # same as first to close plot# vertical sidesp.append([c[0] - wid, c[1] - wid, c[2] + wid])p.append([c[0] - wid, c[1] + wid, c[2] + wid])p.append([c[0] - wid, c[1] + wid, c[2] - wid])p.append([c[0] + wid, c[1] + wid, c[2] - wid])p.append([c[0] + wid, c[1] + wid, c[2] + wid])p.append([c[0] + wid, c[1] - wid, c[2] + wid])p.append([c[0] + wid, c[1] - wid, c[2] - wid])return array(p).Tdef my_calibration(sz):row, col = szfx = 2555 * col / 2592fy = 2586 * row / 1936K = diag([fx, fy, 1])K[0, 2] = 0.5 * colK[1, 2] = 0.5 * rowreturn Kdef set_projection_from_camera(K):glMatrixMode(GL_PROJECTION)glLoadIdentity()fx = K[0, 0]fy = K[1, 1]fovy = 2 * math.atan(0.5 * height / fy) * 180 / math.piaspect = (width * fy) / (height * fx)near = 0.1far = 100.0gluPerspective(fovy, aspect, near, far)glViewport(0, 0, width, height)def set_modelview_from_camera(Rt):glMatrixMode(GL_MODELVIEW)glLoadIdentity()Rx = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]])R = Rt[:, :3]U, S, V = np.linalg.svd(R)R = np.dot(U, V)R[0, :] = -R[0, :]t = Rt[:, 3]M = np.eye(4)M[:3, :3] = np.dot(R, Rx)M[:3, 3] = tM = M.Tm = M.flatten()glLoadMatrixf(m)def draw_background(imname):bg_image = pygame.image.load(imname).convert()bg_data = pygame.image.tostring(bg_image, "RGBX", 1)glMatrixMode(GL_MODELVIEW)glLoadIdentity()glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)glEnable(GL_TEXTURE_2D)glBindTexture(GL_TEXTURE_2D, glGenTextures(1))glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, bg_data)glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST)glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST)glBegin(GL_QUADS)glTexCoord2f(0.0, 0.0);glVertex3f(-1.0, -1.0, -1.0)glTexCoord2f(1.0, 0.0);glVertex3f(1.0, -1.0, -1.0)glTexCoord2f(1.0, 1.0);glVertex3f(1.0, 1.0, -1.0)glTexCoord2f(0.0, 1.0);glVertex3f(-1.0, 1.0, -1.0)glEnd()glDeleteTextures(1)def draw_teapot(size):glEnable(GL_LIGHTING)glEnable(GL_LIGHT0)glEnable(GL_DEPTH_TEST)glClear(GL_DEPTH_BUFFER_BIT)glMaterialfv(GL_FRONT, GL_AMBIENT, [0, 0, 0, 0])glMaterialfv(GL_FRONT, GL_DIFFUSE, [0.5, 0.0, 0.0, 0.0])glMaterialfv(GL_FRONT, GL_SPECULAR, [0.7, 0.6, 0.6, 0.0])glMaterialf(GL_FRONT, GL_SHININESS, 0.25 * 128.0)glutSolidTeapot(size)width, height = 1000, 747def setup():pygame.init()pygame.display.set_mode((width, height), OPENGL | DOUBLEBUF)pygame.display.set_caption("OpenGL AR demo")# compute features
sift.process_image('book_frontal.JPG', 'im0.sift')
l0, d0 = sift.read_features_from_file('im0.sift')sift.process_image('book_perspective.JPG', 'im1.sift')
l1, d1 = sift.read_features_from_file('im1.sift')# match features and estimate homography
matches = sift.match_twosided(d0, d1)
ndx = matches.nonzero()[0]
fp = homography.make_homog(l0[ndx, :2].T)
ndx2 = [int(matches[i]) for i in ndx]
tp = homography.make_homog(l1[ndx2, :2].T)model = homography.RansacModel()
H, inliers = homography.H_from_ransac(fp, tp, model)K = my_calibration((747, 1000))
cam1 = camera.Camera(hstack((K, dot(K, array([[0], [0], [-1]])))))
box = cube_points([0, 0, 0.1], 0.1)
box_cam1 = cam1.project(homography.make_homog(box[:, :5]))
box_trans = homography.normalize(dot(H, box_cam1))
cam2 = camera.Camera(dot(H, cam1.P))
A = dot(linalg.inv(K), cam2.P[:, :3])
A = array([A[:, 0], A[:, 1], cross(A[:, 0], A[:, 1])]).T
cam2.P[:, :3] = dot(K, A)Rt = dot(linalg.inv(K), cam2.P)setup()
draw_background("book_perspective.bmp")
set_projection_from_camera(K)
set_modelview_from_camera(Rt)
draw_teapot(0.05)pygame.display.flip()
while True:for event in pygame.event.get():if event.type == pygame.QUIT:sys.exit()
三,视频的投影
air_main.py
# Useful links
# http://www.pygame.org/wiki/OBJFileLoader
# https://rdmilligan.wordpress.com/2015/10/15/augmented-reality-using-opencv-opengl-and-blender/
# https://clara.io/library# TODO -> Implement command line arguments (scale, model and object to be projected)
# -> Refactor and organize code (proper funcition definition and separation, classes, error handling...)import argparseimport cv2
import numpy as np
import math
import os
from objloader_simple import *# Minimum number of matches that have to be found
# to consider the recognition valid
MIN_MATCHES = 10 def main():"""This functions loads the target surface image,"""homography = None # matrix of camera parameters (made up but works quite well for me) camera_parameters = np.array([[800, 0, 320], [0, 800, 240], [0, 0, 1]])# create ORB keypoint detectororb = cv2.ORB_create()# create BFMatcher object based on hamming distance bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)# load the reference surface that will be searched in the video streamdir_name = os.getcwd()model = cv2.imread(os.path.join(dir_name, 'D:/reference/model.jpg'), 0)# Compute model keypoints and its descriptorskp_model, des_model = orb.detectAndCompute(model, None)# Load 3D model from OBJ fileobj = OBJ(os.path.join(dir_name, 'D:/models/fox.obj'), swapyz=True)# init video capture#1cap = cv2.VideoCapture(0)camera_number = 0cap = cv2.VideoCapture(camera_number + cv2.CAP_DSHOW)while True:# read the current frameret, frame = cap.read()if not ret:print("Unable to capture video")return # find and draw the keypoints of the framekp_frame, des_frame = orb.detectAndCompute(frame, None)# match frame descriptors with model descriptorsmatches = bf.match(des_model, des_frame)# sort them in the order of their distance# the lower the distance, the better the matchmatches = sorted(matches, key=lambda x: x.distance)# compute Homography if enough matches are foundif len(matches) > MIN_MATCHES:# differenciate between source points and destination pointssrc_pts = np.float32([kp_model[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2)dst_pts = np.float32([kp_frame[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2)# compute Homographyhomography, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)if args.rectangle:# Draw a rectangle that marks the found model in the frameh, w = model.shapepts = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2)# project corners into framedst = cv2.perspectiveTransform(pts, homography)# connect them with lines frame = cv2.polylines(frame, [np.int32(dst)], True, 255, 3, cv2.LINE_AA) # if a valid homography matrix was found render cube on model planeif homography is not None:try:# obtain 3D projection matrix from homography matrix and camera parametersprojection = projection_matrix(camera_parameters, homography) # project cube or modelframe = render(frame, obj, projection, model, False)#frame = render(frame, model, projection)except:pass# draw first 10 matches.if args.matches:frame = cv2.drawMatches(model, kp_model, frame, kp_frame, matches[:10], 0, flags=2)# show resultcv2.imshow('frame', frame)if cv2.waitKey(1) & 0xFF == ord('q'):breakelse:print ("Not enough matches found - %d/%d" % (len(matches), MIN_MATCHES))cap.release()cv2.destroyAllWindows()return 0def render(img, obj, projection, model, color=False):"""Render a loaded obj model into the current video frame"""vertices = obj.verticesscale_matrix = np.eye(5) *5h, w = model.shapefor face in obj.faces:face_vertices = face[0]points = np.array([vertices[vertex - 1] for vertex in face_vertices])points = np.dot(points, scale_matrix)# render model in the middle of the reference surface. To do so,# model points must be displacedpoints = np.array([[p[0] + w / 2, p[1] + h / 2, p[2]] for p in points])dst = cv2.perspectiveTransform(points.reshape(-1, 1, 3), projection)imgpts = np.int32(dst)if color is False:cv2.fillConvexPoly(img, imgpts, (137, 27, 211))else:color = hex_to_rgb(face[-1])color = color[::-1] # reversecv2.fillConvexPoly(img, imgpts, color)return imgdef projection_matrix(camera_parameters, homography):"""From the camera calibration matrix and the estimated homographycompute the 3D projection matrix"""# Compute rotation along the x and y axis as well as the translationhomography = homography * (-1)rot_and_transl = np.dot(np.linalg.inv(camera_parameters), homography)col_1 = rot_and_transl[:, 0]col_2 = rot_and_transl[:, 1]col_3 = rot_and_transl[:, 2]# normalise vectorsl = math.sqrt(np.linalg.norm(col_1, 2) * np.linalg.norm(col_2, 2))rot_1 = col_1 / lrot_2 = col_2 / ltranslation = col_3 / l# compute the orthonormal basisc = rot_1 + rot_2p = np.cross(rot_1, rot_2)d = np.cross(c, p)rot_1 = np.dot(c / np.linalg.norm(c, 2) + d / np.linalg.norm(d, 2), 1 / math.sqrt(2))rot_2 = np.dot(c / np.linalg.norm(c, 2) - d / np.linalg.norm(d, 2), 1 / math.sqrt(2))rot_3 = np.cross(rot_1, rot_2)# finally, compute the 3D projection matrix from the model to the current frameprojection = np.stack((rot_1, rot_2, rot_3, translation)).Treturn np.dot(camera_parameters, projection)def hex_to_rgb(hex_color):"""Helper function to convert hex strings to RGB"""hex_color = hex_color.lstrip('#')h_len = len(hex_color)return tuple(int(hex_color[i:i + h_len // 3], 16) for i in range(0, h_len, h_len // 3))# Command line argument parsing
# NOT ALL OF THEM ARE SUPPORTED YET
parser = argparse.ArgumentParser(description='Augmented reality application')parser.add_argument('-r','--rectangle', help = 'draw rectangle delimiting target surface on frame', action = 'store_true')
parser.add_argument('-mk','--model_keypoints', help = 'draw model keypoints', action = 'store_true')
parser.add_argument('-fk','--frame_keypoints', help = 'draw frame keypoints', action = 'store_true')
parser.add_argument('-ma','--matches', help = 'draw matches between keypoints', action = 'store_true')
# TODO jgallostraa -> add support for model specification
#parser.add_argument('-mo','--model', help = 'Specify model to be projected', action = 'store_true')args = parser.parse_args()if __name__ == '__main__':main()
objloader_simple.py
class OBJ:def __init__(self, filename, swapyz=False):"""Loads a Wavefront OBJ file. """self.vertices = []self.normals = []self.texcoords = []self.faces = []material = Nonefor line in open(filename, "r"):if line.startswith('#'): continuevalues = line.split()if not values: continueif values[0] == 'v':v = list(map(float, values[1:4]))if swapyz:v = v[0], v[2], v[1]self.vertices.append(v)elif values[0] == 'vn':v = list(map(float, values[1:4]))if swapyz:v = v[0], v[2], v[1]self.normals.append(v)elif values[0] == 'vt':self.texcoords.append(map(float, values[1:3]))#elif values[0] in ('usemtl', 'usemat'):#material = values[1]#elif values[0] == 'mtllib':#self.mtl = MTL(values[1])elif values[0] == 'f':face = []texcoords = []norms = []for v in values[1:]:w = v.split('/')face.append(int(w[0]))if len(w) >= 2 and len(w[1]) > 0:texcoords.append(int(w[1]))else:texcoords.append(0)if len(w) >= 3 and len(w[2]) > 0:norms.append(int(w[2]))else:norms.append(0)#self.faces.append((face, norms, texcoords, material))self.faces.append((face, norms, texcoords))
这是其中一帧的图像