python增强现实

1,在一平面上放一个立方体

实现代码:

from pylab import *
from PIL import Image# If you have PCV installed, these imports should work
from PCV.geometry import homography, camera
# from PCV.localdescriptors
import sift"""
This is the augmented reality and pose estimation cube example from Section 4.3.
"""def cube_points(c, wid):""" Creates a list of points for plottinga cube with plot. (the first 5 points arethe bottom square, some sides repeated). """p = []# bottomp.append([c[0] - wid, c[1] - wid, c[2] - wid])p.append([c[0] - wid, c[1] + wid, c[2] - wid])p.append([c[0] + wid, c[1] + wid, c[2] - wid])p.append([c[0] + wid, c[1] - wid, c[2] - wid])p.append([c[0] - wid, c[1] - wid, c[2] - wid])  # same as first to close plot# topp.append([c[0] - wid, c[1] - wid, c[2] + wid])p.append([c[0] - wid, c[1] + wid, c[2] + wid])p.append([c[0] + wid, c[1] + wid, c[2] + wid])p.append([c[0] + wid, c[1] - wid, c[2] + wid])p.append([c[0] - wid, c[1] - wid, c[2] + wid])  # same as first to close plot# vertical sidesp.append([c[0] - wid, c[1] - wid, c[2] + wid])p.append([c[0] - wid, c[1] + wid, c[2] + wid])p.append([c[0] - wid, c[1] + wid, c[2] - wid])p.append([c[0] + wid, c[1] + wid, c[2] - wid])p.append([c[0] + wid, c[1] + wid, c[2] + wid])p.append([c[0] + wid, c[1] - wid, c[2] + wid])p.append([c[0] + wid, c[1] - wid, c[2] - wid])return array(p).Tdef my_calibration(sz):"""Calibration function for the camera (iPhone4) used in this example."""row, col = szfx = 2555 * col / 2592fy = 2586 * row / 1936K = diag([fx, fy, 1])K[0, 2] = 0.5 * colK[1, 2] = 0.5 * rowreturn K# compute features
sift.process_image('D:/img/1.jpg', 'im0.sift')
l0, d0 = sift.read_features_from_file('im0.sift')sift.process_image('D:/img/2.jpg', 'im1.sift')
l1, d1 = sift.read_features_from_file('im1.sift')# match features and estimate homography
matches = sift.match_twosided(d0, d1)
ndx = matches.nonzero()[0]
fp = homography.make_homog(l0[ndx, :2].T)
ndx2 = [int(matches[i]) for i in ndx]
tp = homography.make_homog(l1[ndx2, :2].T)model = homography.RansacModel()
H, inliers = homography.H_from_ransac(fp, tp, model)# camera calibration
K = my_calibration((747, 1000))# 3D points at plane z=0 with sides of length 0.2
box = cube_points([0, 0, 0.1], 0.1)# project bottom square in first image
cam1 = camera.Camera(hstack((K, dot(K, array([[0], [0], [-1]])))))
# first points are the bottom square
box_cam1 = cam1.project(homography.make_homog(box[:, :5]))# use H to transfer points to the second image
box_trans = homography.normalize(dot(H, box_cam1))# compute second camera matrix from cam1 and H
cam2 = camera.Camera(dot(H, cam1.P))
A = dot(linalg.inv(K), cam2.P[:, :3])
A = array([A[:, 0], A[:, 1], cross(A[:, 0], A[:, 1])]).T
cam2.P[:, :3] = dot(K, A)# project with the second camera
box_cam2 = cam2.project(homography.make_homog(box))# plotting
im0 = array(Image.open('D:/img/1.JPG'))
im1 = array(Image.open('D:/img/2.JPG'))figure()
imshow(im0)
plot(box_cam1[0, :], box_cam1[1, :], linewidth=3)
title('2D projection of bottom square')
axis('off')figure()
imshow(im1)
plot(box_trans[0, :], box_trans[1, :], linewidth=3)
title('2D projection transfered with H')
axis('off')figure()
imshow(im1)
plot(box_cam2[0, :], box_cam2[1, :], linewidth=3)
title('3D points projected in second image')
axis('off')show()

结果:

     

            图1                                                      图2                          图3 

使用平面物体作为标记物,来计算用于新视图投影矩阵的例子。将图像的特征和对齐后的标记匹配,计算除单应矩阵,然后用于计算照相机的姿态。将有一个蓝色正方形区域的模板图像(图1),从未知视觉拍摄的一幅图像,该图像包含同一个正方形,该正方形已经经过估计的单应性矩阵进行了变换(图2),使用计算出的照相机矩阵变换立方体(图3)

二,在图像中放置虚拟物体

import math
import pickle
from pylab import *
from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
import pygame, pygame.image
from pygame.locals import *
from PCV.geometry import homography, camera
import siftdef cube_points(c, wid):""" Creates a list of points for plottinga cube with plot. (the first 5 points arethe bottom square, some sides repeated). """p = []# bottomp.append([c[0] - wid, c[1] - wid, c[2] - wid])p.append([c[0] - wid, c[1] + wid, c[2] - wid])p.append([c[0] + wid, c[1] + wid, c[2] - wid])p.append([c[0] + wid, c[1] - wid, c[2] - wid])p.append([c[0] - wid, c[1] - wid, c[2] - wid])  # same as first to close plot# topp.append([c[0] - wid, c[1] - wid, c[2] + wid])p.append([c[0] - wid, c[1] + wid, c[2] + wid])p.append([c[0] + wid, c[1] + wid, c[2] + wid])p.append([c[0] + wid, c[1] - wid, c[2] + wid])p.append([c[0] - wid, c[1] - wid, c[2] + wid])  # same as first to close plot# vertical sidesp.append([c[0] - wid, c[1] - wid, c[2] + wid])p.append([c[0] - wid, c[1] + wid, c[2] + wid])p.append([c[0] - wid, c[1] + wid, c[2] - wid])p.append([c[0] + wid, c[1] + wid, c[2] - wid])p.append([c[0] + wid, c[1] + wid, c[2] + wid])p.append([c[0] + wid, c[1] - wid, c[2] + wid])p.append([c[0] + wid, c[1] - wid, c[2] - wid])return array(p).Tdef my_calibration(sz):row, col = szfx = 2555 * col / 2592fy = 2586 * row / 1936K = diag([fx, fy, 1])K[0, 2] = 0.5 * colK[1, 2] = 0.5 * rowreturn Kdef set_projection_from_camera(K):glMatrixMode(GL_PROJECTION)glLoadIdentity()fx = K[0, 0]fy = K[1, 1]fovy = 2 * math.atan(0.5 * height / fy) * 180 / math.piaspect = (width * fy) / (height * fx)near = 0.1far = 100.0gluPerspective(fovy, aspect, near, far)glViewport(0, 0, width, height)def set_modelview_from_camera(Rt):glMatrixMode(GL_MODELVIEW)glLoadIdentity()Rx = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]])R = Rt[:, :3]U, S, V = np.linalg.svd(R)R = np.dot(U, V)R[0, :] = -R[0, :]t = Rt[:, 3]M = np.eye(4)M[:3, :3] = np.dot(R, Rx)M[:3, 3] = tM = M.Tm = M.flatten()glLoadMatrixf(m)def draw_background(imname):bg_image = pygame.image.load(imname).convert()bg_data = pygame.image.tostring(bg_image, "RGBX", 1)glMatrixMode(GL_MODELVIEW)glLoadIdentity()glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)glEnable(GL_TEXTURE_2D)glBindTexture(GL_TEXTURE_2D, glGenTextures(1))glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, bg_data)glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST)glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST)glBegin(GL_QUADS)glTexCoord2f(0.0, 0.0);glVertex3f(-1.0, -1.0, -1.0)glTexCoord2f(1.0, 0.0);glVertex3f(1.0, -1.0, -1.0)glTexCoord2f(1.0, 1.0);glVertex3f(1.0, 1.0, -1.0)glTexCoord2f(0.0, 1.0);glVertex3f(-1.0, 1.0, -1.0)glEnd()glDeleteTextures(1)def draw_teapot(size):glEnable(GL_LIGHTING)glEnable(GL_LIGHT0)glEnable(GL_DEPTH_TEST)glClear(GL_DEPTH_BUFFER_BIT)glMaterialfv(GL_FRONT, GL_AMBIENT, [0, 0, 0, 0])glMaterialfv(GL_FRONT, GL_DIFFUSE, [0.5, 0.0, 0.0, 0.0])glMaterialfv(GL_FRONT, GL_SPECULAR, [0.7, 0.6, 0.6, 0.0])glMaterialf(GL_FRONT, GL_SHININESS, 0.25 * 128.0)glutSolidTeapot(size)width, height = 1000, 747def setup():pygame.init()pygame.display.set_mode((width, height), OPENGL | DOUBLEBUF)pygame.display.set_caption("OpenGL AR demo")# compute features
sift.process_image('book_frontal.JPG', 'im0.sift')
l0, d0 = sift.read_features_from_file('im0.sift')sift.process_image('book_perspective.JPG', 'im1.sift')
l1, d1 = sift.read_features_from_file('im1.sift')# match features and estimate homography
matches = sift.match_twosided(d0, d1)
ndx = matches.nonzero()[0]
fp = homography.make_homog(l0[ndx, :2].T)
ndx2 = [int(matches[i]) for i in ndx]
tp = homography.make_homog(l1[ndx2, :2].T)model = homography.RansacModel()
H, inliers = homography.H_from_ransac(fp, tp, model)K = my_calibration((747, 1000))
cam1 = camera.Camera(hstack((K, dot(K, array([[0], [0], [-1]])))))
box = cube_points([0, 0, 0.1], 0.1)
box_cam1 = cam1.project(homography.make_homog(box[:, :5]))
box_trans = homography.normalize(dot(H, box_cam1))
cam2 = camera.Camera(dot(H, cam1.P))
A = dot(linalg.inv(K), cam2.P[:, :3])
A = array([A[:, 0], A[:, 1], cross(A[:, 0], A[:, 1])]).T
cam2.P[:, :3] = dot(K, A)Rt = dot(linalg.inv(K), cam2.P)setup()
draw_background("book_perspective.bmp")
set_projection_from_camera(K)
set_modelview_from_camera(Rt)
draw_teapot(0.05)pygame.display.flip()
while True:for event in pygame.event.get():if event.type == pygame.QUIT:sys.exit()

三,视频的投影

air_main.py


# Useful links
# http://www.pygame.org/wiki/OBJFileLoader
# https://rdmilligan.wordpress.com/2015/10/15/augmented-reality-using-opencv-opengl-and-blender/
# https://clara.io/library# TODO -> Implement command line arguments (scale, model and object to be projected)
#      -> Refactor and organize code (proper funcition definition and separation, classes, error handling...)import argparseimport cv2
import numpy as np
import math
import os
from objloader_simple import *# Minimum number of matches that have to be found
# to consider the recognition valid
MIN_MATCHES = 10  def main():"""This functions loads the target surface image,"""homography = None # matrix of camera parameters (made up but works quite well for me) camera_parameters = np.array([[800, 0, 320], [0, 800, 240], [0, 0, 1]])# create ORB keypoint detectororb = cv2.ORB_create()# create BFMatcher object based on hamming distance  bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)# load the reference surface that will be searched in the video streamdir_name = os.getcwd()model = cv2.imread(os.path.join(dir_name, 'D:/reference/model.jpg'), 0)# Compute model keypoints and its descriptorskp_model, des_model = orb.detectAndCompute(model, None)# Load 3D model from OBJ fileobj = OBJ(os.path.join(dir_name, 'D:/models/fox.obj'), swapyz=True)# init video capture#1cap = cv2.VideoCapture(0)camera_number = 0cap = cv2.VideoCapture(camera_number + cv2.CAP_DSHOW)while True:# read the current frameret, frame = cap.read()if not ret:print("Unable to capture video")return # find and draw the keypoints of the framekp_frame, des_frame = orb.detectAndCompute(frame, None)# match frame descriptors with model descriptorsmatches = bf.match(des_model, des_frame)# sort them in the order of their distance# the lower the distance, the better the matchmatches = sorted(matches, key=lambda x: x.distance)# compute Homography if enough matches are foundif len(matches) > MIN_MATCHES:# differenciate between source points and destination pointssrc_pts = np.float32([kp_model[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2)dst_pts = np.float32([kp_frame[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2)# compute Homographyhomography, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)if args.rectangle:# Draw a rectangle that marks the found model in the frameh, w = model.shapepts = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2)# project corners into framedst = cv2.perspectiveTransform(pts, homography)# connect them with lines  frame = cv2.polylines(frame, [np.int32(dst)], True, 255, 3, cv2.LINE_AA)  # if a valid homography matrix was found render cube on model planeif homography is not None:try:# obtain 3D projection matrix from homography matrix and camera parametersprojection = projection_matrix(camera_parameters, homography)  # project cube or modelframe = render(frame, obj, projection, model, False)#frame = render(frame, model, projection)except:pass# draw first 10 matches.if args.matches:frame = cv2.drawMatches(model, kp_model, frame, kp_frame, matches[:10], 0, flags=2)# show resultcv2.imshow('frame', frame)if cv2.waitKey(1) & 0xFF == ord('q'):breakelse:print ("Not enough matches found - %d/%d" % (len(matches), MIN_MATCHES))cap.release()cv2.destroyAllWindows()return 0def render(img, obj, projection, model, color=False):"""Render a loaded obj model into the current video frame"""vertices = obj.verticesscale_matrix = np.eye(5) *5h, w = model.shapefor face in obj.faces:face_vertices = face[0]points = np.array([vertices[vertex - 1] for vertex in face_vertices])points = np.dot(points, scale_matrix)# render model in the middle of the reference surface. To do so,# model points must be displacedpoints = np.array([[p[0] + w / 2, p[1] + h / 2, p[2]] for p in points])dst = cv2.perspectiveTransform(points.reshape(-1, 1, 3), projection)imgpts = np.int32(dst)if color is False:cv2.fillConvexPoly(img, imgpts, (137, 27, 211))else:color = hex_to_rgb(face[-1])color = color[::-1]  # reversecv2.fillConvexPoly(img, imgpts, color)return imgdef projection_matrix(camera_parameters, homography):"""From the camera calibration matrix and the estimated homographycompute the 3D projection matrix"""# Compute rotation along the x and y axis as well as the translationhomography = homography * (-1)rot_and_transl = np.dot(np.linalg.inv(camera_parameters), homography)col_1 = rot_and_transl[:, 0]col_2 = rot_and_transl[:, 1]col_3 = rot_and_transl[:, 2]# normalise vectorsl = math.sqrt(np.linalg.norm(col_1, 2) * np.linalg.norm(col_2, 2))rot_1 = col_1 / lrot_2 = col_2 / ltranslation = col_3 / l# compute the orthonormal basisc = rot_1 + rot_2p = np.cross(rot_1, rot_2)d = np.cross(c, p)rot_1 = np.dot(c / np.linalg.norm(c, 2) + d / np.linalg.norm(d, 2), 1 / math.sqrt(2))rot_2 = np.dot(c / np.linalg.norm(c, 2) - d / np.linalg.norm(d, 2), 1 / math.sqrt(2))rot_3 = np.cross(rot_1, rot_2)# finally, compute the 3D projection matrix from the model to the current frameprojection = np.stack((rot_1, rot_2, rot_3, translation)).Treturn np.dot(camera_parameters, projection)def hex_to_rgb(hex_color):"""Helper function to convert hex strings to RGB"""hex_color = hex_color.lstrip('#')h_len = len(hex_color)return tuple(int(hex_color[i:i + h_len // 3], 16) for i in range(0, h_len, h_len // 3))# Command line argument parsing
# NOT ALL OF THEM ARE SUPPORTED YET
parser = argparse.ArgumentParser(description='Augmented reality application')parser.add_argument('-r','--rectangle', help = 'draw rectangle delimiting target surface on frame', action = 'store_true')
parser.add_argument('-mk','--model_keypoints', help = 'draw model keypoints', action = 'store_true')
parser.add_argument('-fk','--frame_keypoints', help = 'draw frame keypoints', action = 'store_true')
parser.add_argument('-ma','--matches', help = 'draw matches between keypoints', action = 'store_true')
# TODO jgallostraa -> add support for model specification
#parser.add_argument('-mo','--model', help = 'Specify model to be projected', action = 'store_true')args = parser.parse_args()if __name__ == '__main__':main()

objloader_simple.py

class OBJ:def __init__(self, filename, swapyz=False):"""Loads a Wavefront OBJ file. """self.vertices = []self.normals = []self.texcoords = []self.faces = []material = Nonefor line in open(filename, "r"):if line.startswith('#'): continuevalues = line.split()if not values: continueif values[0] == 'v':v = list(map(float, values[1:4]))if swapyz:v = v[0], v[2], v[1]self.vertices.append(v)elif values[0] == 'vn':v = list(map(float, values[1:4]))if swapyz:v = v[0], v[2], v[1]self.normals.append(v)elif values[0] == 'vt':self.texcoords.append(map(float, values[1:3]))#elif values[0] in ('usemtl', 'usemat'):#material = values[1]#elif values[0] == 'mtllib':#self.mtl = MTL(values[1])elif values[0] == 'f':face = []texcoords = []norms = []for v in values[1:]:w = v.split('/')face.append(int(w[0]))if len(w) >= 2 and len(w[1]) > 0:texcoords.append(int(w[1]))else:texcoords.append(0)if len(w) >= 3 and len(w[2]) > 0:norms.append(int(w[2]))else:norms.append(0)#self.faces.append((face, norms, texcoords, material))self.faces.append((face, norms, texcoords))

 

 这是其中一帧的图像

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/1620419.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Python+OpenCV实现增强现实!快来召唤你的库洛牌!!!

相信大家都看过或者听过《摩卡少女樱》这部动漫,是不是非常羡慕小樱能够从库洛牌中召唤出各种各样会有魔法的人呀?! 今天,博主就来教教大家如何实现召唤吧!!!学会以后相信你一定可以召唤神龙滴&…

Logstash【从无到有从有到无】【简介】【L2】Logstash入门

目录 1.Logstash入门 1.1.安装Logstash 1.1.1.从下载的二进制安装 1.1.2.从包存储库安装 1.1.3.使用Homebrew在Mac上安装Logstash 1.1.4.使用Homebrew启动Logstash 1.1.5.Docker 1.2.简单使用 1.3.用Logstash解析日志 1.3.1.配置Filebeat以将日志行发送到Logstash 1…

dojo框架笔记

一、模块定义 1、定义只含值对,没有任何依赖的模块(moudle1.js) define({ color: "black", size: "unisize" }); 2、定义没有任何依赖,但是需要一个准备活动的函数(moudle2.js) define…

Flutter技术与实战(5)

Flutter进阶 文章目录 Flutter进阶如何构造炫酷的动画效果Animation、AnimationController与ListenerAnimationWidget与AnimationBuilderhero动画 单线程模型怎么保证UI运行流畅Event Loop机制异步任务异步函数Isolate HTTP网络编程与JSON解析HTTP网络编程HttpClienthttpdioJSO…

Styling FX Buttons with CSS

http://fxexperience.com/2011/12/styling-fx-buttons-with-css/ ———————————————————————————————————————————————————————— Styling FX Buttons with CSS December 20, 2011 By Jasper Potts A number of people h…

使用机器学习模型对大盘指数进行预测

作者:子楠 链接:https://zhuanlan.zhihu.com/p/24417597 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 用数学模型分析策略,可以避免由于情绪波动的造成的影响,避免一些…

大盘趋势图强弱分析 通达信大盘多空指标公式 副图不加密

判断大盘走势图的四大技巧有哪些? 答:1.消息面、政策面、经济面。2.技术面。技术面上最重要的是成交量。3.利用领涨股。一般一波行情的发展都会由一只或几只领涨股引领,对他们本身进行分析进而了解市场主力所盯紧的热点,然后判断…

通达信 红线精准主升浪波段买卖选股指标 蝶形飞扬副图公式源码

波段神器,无未来,信号极其准确,不是好用的指标不好分享给大家! 这是指标用于显示选股下单的信号,只显示安全的做多做空信号,所以信号较少,少而准!对比一下就知道了! 一个能及时提示上涨和下跌,有兴趣的朋友可以下载来试试! 指标用…

R实战:【实战分析】大盘历年几月是行情?

有人说每年的5月份是下跌行情,11月份左右会有个吃饭行情,是这样的吗?还是用事实来说话吧 R实战系列专栏 百度云下载:本文R脚本和数据文件

java 获得 大盘 开盘_教你利用开盘十分钟判定当日大盘强弱(建议收藏!)

深沪两市都可以用通过市场要素快速排序的方法告诉我们市场的真正实质。市场量价要素排序的功能是专业选手快速掌握市场真正情况的窗口,也是专业看盘的标准次序。本文教你利用开盘十分钟判定当日大盘强弱! 1,第一板个股涨幅 深沪两市都可以用通…

涨跌的例题用C语言编辑,涨跌比率指标用法及源代码(ADR)

ADR指标又叫涨跌比率指标或上升下降比指标,其英文全称是“Advance Decline Ratio”。和ADL指标一样,是专门研究股票指数走势的中长期技术分析工具。 涨跌比率ADR指标是将一定时期内上市交易的全部股票中的上涨加数和下跌加数进行比较,得出上涨…

北向资金能预示大盘涨跌?【附Python源码】

01 引言 中国证监会于 2014 年和 2016 年分别批准了沪港通和深港通,建立了大陆和香港股市的互联互通机制,市场通常把沪股通和深股通的合计流入资金称为北向资金。换句话说,北上资金就是指从香港流入大陆股市的资金,而内地流入香港…

利用随机森林预测股票大盘涨跌

本文仅从实战角度去观察,利用机器学习算法中,随机森林模型预测股票市场指数涨跌的准确率。 适合入门玩家 首先,我们导入所需要的模块 import numpy as np import pandas as pd import talib as ta #金融数据计算 import datetime,pickle …

大盘涨跌预测及仓位控制思考

今天分享一篇个人在大盘涨跌上的预测及通过涨跌预测延伸的仓位控制思考。 大盘的择时个人一直认为是股票量化中最重要的部分(普通的策略)。一个好的择时方法,虽然可能会让部分盈利变少,但能够大大的降低回撤。很多策略虽然有很高…

[第七届蓝帽杯全国大学生网络安全技能大赛 蓝帽杯 2023]——Web方向部分题 详细Writeup

Web LovePHP 你真的熟悉PHP吗&#xff1f; 源码如下 <?php class Saferman{public $check True;public function __destruct(){if($this->check True){file($_GET[secret]);}}public function __wakeup(){$this->checkFalse;} } if(isset($_GET[my_secret.flag]…

想要买一款手机!得先用爬虫爬取一下他的评论是否值得买!

1. 网站分析 本文实现的爬虫是抓取京东商城指定苹果手机的评论信息。使用 requests 抓取手机评论 API 信息&#xff0c;然后通过 json 模块的相应 API 将返回的 JSON 格式的字符串转换为 JSON 对象&#xff0c;并提取其中感兴趣的信息。读者可以点击此处打开 京东商城&#xf…

Web前端期末大作业-在线手机商城网站设计(HTML+CSS+JS)

&#x1f34a;作者&#xff1a;计算机编程-吉哥 &#x1f34a;简介&#xff1a;专业从事JavaWeb程序开发&#xff0c;微信小程序开发&#xff0c;定制化项目、源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事&#xff0c;生活就是快乐的。 &#x1f34a;心愿&#xff1a;点…

优秀网站看前端 —— 小米Note介绍页面

刚开始经营博客的时候&#xff0c;我写过不少“扒皮”系列的文章&#xff0c;主要介绍一些知名站点上有趣的交互效果&#xff0c;然后试着实现它们。后来开始把注意力挪到一些新颖的前端技术上&#xff0c;“扒皮”系列便因此封笔多时。今天打算重开“扒皮”的坑&#xff0c;不…

爬取五大平台621款手机,告诉你双十一在哪买最便宜!

↑关注置顶~ 有趣的不像个技术号 今晚0点&#xff0c;相约剁手 大家好&#xff0c;我是朱小五 明天就是双十一了&#xff0c;看了看自己手里的卡的像IE浏览器的手机&#xff0c;感觉可能等不到5G普及了。 我&#xff01;要&#xff01;换&#xff01;手&#xff01;机&#xff…

宁花4000买手机 不花6元买游戏

宁花4000买手机 不花6元买游戏 2012-03-22 09:17 0评论 阅读数&#xff1a;1005 单独窗口打印放大字号缩小字号 千变万变&#xff0c;国情不变。曾经毁了中国PC游戏市场的那些东西&#xff0c;如今又在iOS游戏市场一一重现&#xff1a;盗版、外挂、抄袭、强制消费、恶意竞争………