图像压缩算法

这里说​十种常用的图像压缩算法

数据压缩是保留相同或绝大部分数据前提下减小文件大小的过程。它的原理是消除不必要的数据或以更高效的格式重新组织数据。在进行数据压缩时,你可以选择使用有损方法或无损方法。有损方法会永久性地擦除掉一些数据,而无损方法则能保证持有全部的数据。使用哪类方法取决于你要让你的文件保持多大的精准度。

本文会为你介绍6种不同的无损数据压缩算法,以及4种基于深度学习的图像/视频压缩算法。

六款无损数据压缩算法

无损压缩算法通常被用于归档或其他高保真目的。这些算法能够让你在确保文件可被完整恢复的同时减少文件大小。有很多种无损压缩算法供你选择。下面介绍6种常用的算法。

1.LZ77

LZ77算法发布于1977年。作为很多其他无损压缩算法的基础,它使用了“滑动窗口”的概念。在这个概念中,LZ77管理了一个字典。该字典使用三元组的方式:

  • 偏移量(Offset):短语起始处于文件开头之间的距离

  • 行程长度(Run length):组成短语的字符数

  • 偏离字符:表明新短语的标记符,匹配结束后,前向缓冲区中的第一个符号

当文件被解析时,字典会被实时更新以反映最新的压缩数据和大小。举个例子,如果一个文件包含字符串"abbadabba",那么被压缩到字典中的项就是"abb(0,1,'d')(0,3,'a')"。你可以看下下表的拆解过程:

这个例子中,被压缩后的数据并不比初始数据小多少。但一般情况下,当文件很长时,这种压缩效果就会显现出来。

2. LZR

LZR由Michael Rodeh于1981年提出,它是在LZ77的基础上发展而来。这个算法目标是成为LZ77的一个线性时间替换算法,但编码后Udell指针可能指向文件的任意偏移量,意味着需要耗费可观的内存,因此表现不如LZ77。

3. LZSS

LZSS,全称Lempel-Ziv-Storer-Szymanski,于1982年提出。它也是旨在提升LZ77的一个算法。它引入了一个方法能够检测是否真的减少了文件大小。如果未能起到压缩效果,就保持原来的输入格式。LZSS还移除了对偏离字符的使用,只使用<偏移量,长度>对。这个压缩算法广泛用于归档格式,如RAR以及网络数据的压缩。

4. DEFLATE

DEFLATE算法于1993年提出。作者是Phil Katz。该算法结合了LZ77或LZSS预处理器与霍夫曼编码。霍夫曼编码是1952年提出的诉法。它是一种熵编码,主要基于字符出现频度分配编码。

5. LZMA

LZMA算法,全称是Lempel-Ziv Markov chain Algorithm(LZMA),于1998年提出,是LZ77的改进版,旨在实现.7z格式的7-ZIp文件归档。它使用链式压缩方法,在比特而非字节级别上应用修改后的LZ77算法。该压缩算法的输出稍后被算数编码进行处理以便后续进一步压缩。根据具体的实现不同,可能会引入其他的压缩步骤。

6. LZMA2

LZMA2算法于2009年提出,是LZMA的改良版。它提升了LZMA在多线程能力上的性能以及提升了处理不可压缩类型数据的表现。

四种基于深度学习的图像/视频压缩算法

除了上面介绍的静态压缩算法,还有基于深度学习的压缩算法可供选择。

1. 基于多层感知机的压缩算法

多层感知机(Multi-Layer Perceptron,MLP)技术使用多层神经元来获取、处理以及输出数据。它能够被应用到数据降维任务和数据压缩。首个基于MLP的算法于1988年被提出,目前已经被应用到:

  • 二进制编码——标准的双符号编码

  • 量化——限制从连续集到离散集的输入

  • 特定领域内的转换——像素级的数据变更

MLP算法利用分解神经网络上一步的输出来确定最佳的二进制码组合。后面,使用预测技术优化这个方法。预测技术能够通过反向传播基于相邻数据来提升数据准确度。

2. DeepCoder -- 基于视频压缩的深度神经网络

DeepCoder是一个基于卷积神经网络(CNN)的框架,它是传统视频压缩技术的替代。该模型为预测信号和残留信号使用单独的CNN。它使用标量量化技术和一个传统的文件压缩算法——霍夫曼编码——将编码特征映射到一个二进制流中。一般认为,该模型的性能要优于著名的H.264/AVC视频编码规范。

3. 基于CNN的压缩算法

CNN是分层的神经网络,通常用于图像识别和特征检测。当应用到压缩时,这些神经网络使用卷积操作来计算相邻像素点之间的相关性。CNN展示出了比基于MLP算法更好的压缩结果,提升了超分辨率下的性能以及减少了伪影。另外,基于CNN的压缩还提升了JPEG图像的品质,因为它减少了峰值信噪比(PSNR)和结构相似性(SSIM)。基于CNN的压缩通过使用熵估计法还实现了HEVC的性能。

4. 基于生成式对抗网络(GAN)的压缩算法

GAN属于神经网络的一种,它使用两个神经网络彼此竞争的方式来产生更精确的分析和预测。最早基于GAN的压缩算法于2017年被提出。这些算法的文件压缩比例是其他常见方法(如JPEG、WebP等)的2.5倍。你可以使用基于GAN的方法通过并行化处理来实现实时压缩。主要的原理是基于最相关的特征来压缩图片。当解码的时候,算法基于这些特征来重建图像。和基于CNN算法相比,基于GAN的压缩算法通过消除对抗损失能够产生更高品质的图像。

总结

压缩算法能够帮助你优化文件大小。不同的算法有不同的结果。本文简述了6种静态的无损压缩算法以及4种基于深度学习的压缩算法。当然,如果这些算法都不适用于你的场景,你可以查看这篇文章来寻找适合你场景的算法。算法有很多,总有一款适合你!

     whaosoft aiot http://143ai.com

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/353178.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

C#图像压缩相关方法总结

前往我的主页以获得更好的阅读体验C#图像压缩相关方法总结 - DearXuan的主页https://blog.dearxuan.com/2022/02/07/C-%E5%9B%BE%E5%83%8F%E5%8E%8B%E7%BC%A9%E7%9B%B8%E5%85%B3%E6%96%B9%E6%B3%95%E6%80%BB%E7%BB%93/ 前言 本文所描述的所有内容和算法&#xff0c;均未使用任…

Matlab实现图像压缩

文章和代码以及样例图片等相关资源&#xff0c;已经归档至【Github仓库&#xff1a;digital-image-processing-matlab】或者公众号【AIShareLab】回复 数字图像处理 也可获取。 文章目录 目的原理图像压缩原理离散余弦变换(DCT)图像压缩原理行程编码&#xff08;RLE&#xff09…

图像压缩相关内容简介

历史 图像压缩的研究起源于20世纪40年代。1948年香农的经典论文《通信的数学原理》中首次提到信息率深圳函数的概念&#xff0c;1959年他又建立了率失真理论&#xff0c;从而奠定了信源编码的理论基础。随后伯杰等人有对其进行了深入的研究&#xff0c;并取得了一定的进步&…

移动端做安全测试的重要性

安全性测试的目的是发现危害手机中数据的安全和完整性的错误和缺陷。发现安全错误通常是比较困难的,软件通常功能运行正常但却不安全。 一、软件权限 APP软件权限包括:网络通信、信息发送、自动启动、 媒体录制、读取用户信息、写入用户数据等权限,因关系到用户个人信息和隐私…

cad 打开硬件加速卡_CAD如何根据已知条件设计图形

1、打开CAD&#xff0c;在左下角把极轴追踪打开(鼠标右键点击&#xff0c;选择90度打√)、把对象捕捉打开(鼠标右键点击&#xff0c;选择中点)。 2、然后在操作界面画线&#xff0c;如图我们已知直角边885和750&#xff0c;方法是按长8852、高750来绘制三点定圆弧。先画8852177…

C#ObjectArx Cad将图形范围缩放至指定实体

先上代码&#xff08;亲测可用&#xff09;&#xff1a; /// <summary>/// 定位缩放值指定实体/// </summary>/// <param name"oid"></param>public static void Orientate(ObjectId oid){try{Entity current_entity GetEntity(oid);curren…

CAD图层设置

一、图层介绍 我们可以把图层想象为一张没有厚度的透明纸&#xff0c;各层之间完全对齐&#xff0c;一层上的某一基准点准确地对准其他各层上的同一基准点。用户可以给每一图层指定所用的线型、颜色&#xff0c;并将具有相同线型和颜色的对象放在统一图层&#xff0c;这些图层…

cad打印本计算机未配置,CAD打印的基本设置详细教程

CAD打印的基本设置详细教程 开始画图之前我们就考虑到打印的需要&#xff0c;要用多大纸张&#xff0c;打印比例应该设置成多少&#xff0c;打印后的字高、线宽、颜色应该设置成多少&#xff0c;在绘制图形的时候&#xff0c;这些为打印而做的准备工作必须做好。要想正确地打印…

CAD打印图形、输出图形

打印图形 指定打印范围、打印比例、图纸大小、打印样式、页边距等参数&#xff0c;打印图纸。 1.单击常用工具栏的“打印图形”按钮。 2.在命令行中输入Plot&#xff0c;按回车键。 打印界面如下 &#xff1a; 界面信息 &#xff08;1&#xff09;选择打印机&#xff1a;默…

CAD梦想画图中如何设置图层

图层介绍 我们可以把CAD对象想象成一张没有厚度的透明纸&#xff0c;各层之间完全对齐&#xff0c;一层上的某一基准点准确的对准其它各层上的同一基准点。用户可以给每一图层指定所用的线型、颜色与线宽&#xff0c;并将其相同线型和颜色的对象放在同一图层&#xff0c;这些图…

AUTOCAD——图形单位与图形边界

图形单位 控制长度与角度的显示精度与格式。 1.执行方式 命令行&#xff1a;DDUNITS 菜单栏&#xff1a;格式→单位 “图形单位操作命令位置”界面 执行以上命令后&#xff0c;系统会弹出如下图所示的“图形单位”对话框。 2.选项说明 &#xff08;1&#xff09;长度与角…

OSSIM进行主机漏洞扫描(03)

OSSIM进行主机漏洞扫描方式 按照如图选择&#xff0c;ENVIRONMENT–SCAN JOBS–NEW SCAN JOB进入新增页面 其中各选项含义如下 Job Name:扫描任务名称。 Select Sensor:扫描的嗅探器。 Profile:扫描的类型&#xff0c;包括Deep- Non destructive Full and Slow scan(深入)、D…

Spring Boot 系统初始化器详解

Spring Boot 3.x系列文章 Spring Boot 2.7.8 中文参考指南(一)Spring Boot 2.7.8 中文参考指南(二)-WebSpring Boot 源码阅读初始化环境搭建Spring Boot 框架整体启动流程详解Spring Boot 系统初始化器详解 自定义系统初始化器 Spring Boot 有多种加载自定义初始化器的方法&am…

网络故障管理

网络故障管理是以最快的方式查找、隔离和排除网络故障的过程。故障管理是网络管理的重要组成部分&#xff0c;它通过快速解决故障来最大限度地减少停机时间并防止设备故障&#xff0c;从而确保最佳的网络可用性并防止业务损失。 网络故障监控是故障管理的第一步&#xff0c;因…

NLP+VS︱深度学习数据集标注工具、图像语料数据库、实验室搜索ing....

from: https://blog.csdn.net/sinat_26917383/article/details/54908389 一、NLP标注工具 来源&#xff1a;《构想&#xff1a;中文文本标注工具&#xff08;附开源文本标注工具列表&#xff09;》 Chinese-Annotator 来源&#xff1a;https://github.com/crownpku/Chinese-…

wince集锦

为什么80%的码农都做不了架构师&#xff1f;>>> WinCE驱动开发问题精华集锦在mediaplayer全屏播放的时候&#xff0c;我可以用键盘上的某一个键调节声音大小&#xff0c;现在我想在屏幕上显示调节的结果就跟我们看电视一样能出来一些标记。当声音变大在屏幕上就增多…

k8s技术预研8--深入掌握Kubernetes Service

本文内容已经基于k8s v1.8.8进行了验证测试。 k8s的Service定义了一个服务的访问入口地址&#xff0c;前端的应用通过这个入口地址访问其背后的一组由Pod副本组成的集群实例&#xff0c;来自外部的访问请求被负载均衡到后端的各个容器应用上。Service与其后端Pod副本集群之间则…

spring boot 与 iview 前后端分离架构之开发环境基于docker的部署的实现(三十六)

spring boot 与 iview 前后端分离架构之开发环境基于docker的后端的部署的实现&#xff08;三十六&#xff09; 公众号基于docker的后端的部署安装mysql数据库创建数据库 安装redis安装docker创建基础镜像编写后台管理系统的DockerFile文件pom.xml的配置新增application-prod.y…

回归模型评价指标R2_score

搞清楚R2_score计算之前&#xff0c;我们还需要了解几个统计学概念。 若用 y i y_i yi​表示真实的观测值&#xff0c;用 y ˉ \bar{y} yˉ​表示真实观测值的平均值&#xff0c;用 y i ^ \hat{y_i} yi​^​表示预测值,则&#xff1a; 回归平方和&#xff1a;SSR 即估计值与…

Python网络编程

查看Python中支持的编码方式&#xff1a;https://docs.python.org/3/library/codecs.html?highlightutf IP地址工具&#xff1a;http://ipblock.chacuo.net/ 查看应用程序进程PID&#xff1a; 1.启动任务管理器&#xff0c;点击进程&#xff1a;默认是这样的&#xff1a; 2…