【机器学习西瓜书学习笔记——神经网络】

机器学习西瓜书学习笔记【第四章】

  • 第五章 神经网络
    • 5.1神经元模型
    • 5.2 感知机与多层网络
      • 学习
      • 感知机
      • 学习率
      • 成本/损失函数
      • 梯度下降
    • 5.3 BP神经网络(误差逆传播)
    • 5.4 全局最小与局部极小
    • 5.5 其他常见神经网络
      • RBF网络
        • RBF 与 BP 最重要的区别
      • ART网络

第五章 神经网络

5.1神经元模型

神经网络的最基本的构成元素是神经元。生物神经网络中各个网络之间相互连接,通过神经递质相互传递信息。如果某个神经元接收了足够多的神经递质(乙酰胆碱),那么其点位变会积累地足够高,从而超过某个阈值。超过这个阈值之后,这个神经元变会被激活,达到兴奋的状态,而后发送神经递质给其他的神经元

MP神经元模型

img

激活函数

函数的值域是(0,1),即函数值落在0到1之间。S函数的性质有可以将较大范围内变化的输入值压缩到**(0,1)区间内,因此也被成为挤压函数**。

img

5.2 感知机与多层网络

学习

学习:从已知数据中学得模型(确定权重 ω i {\omega}_{i} ωi

本质:不断更改权重( ω i {\omega}_{i} ωi),使得模型求出的预测值尽可能地接近真实值。

感知机

感知机:两层神经元组成。

img

通过感知机实现逻辑运算,在MP神经元模型中,有输出:

y = f ( ∑ i ω i x i − θ ) y=f({\textstyle \sum_{i}^{}} {\omega }_{i}{x}_{i}-\theta ) y=f(iωixiθ)

假设激活函数为阶跃函数 s g n ( x ) sgn(x) sgn(x)

KaTeX parse error: {equation} can be used only in display mode.\geKaTeX parse error: Expected 'EOF', got '}' at position 3: 0;}̲\\ 1& \text{x<0…

通过制定权重和阈值得到可以进行逻辑运算的感知机,那么如果给定训练数据集,同样我们可以通过学习得到相应地权重和阈值。
阈值b可以看做是一个输入固定为-1.0对应连接权重ωn+1的哑结点。通过这样定义阈值,则可以将学习权重和阈值简化为只学习权重。

感知机的学习规则很简单,对于训练样本(x,y),若感知机当前的输出为y’,则感知机的权重调整如下:

Δ ω i = η ( y − y ′ ) x i \Delta{\omega }_{i}=\eta (y-y'){x}_{i} Δωi=η(yy)xi

ω i ← ω i + Δ ω i {\omega }_{i}\gets{\omega }_{i}+\Delta{\omega }_{i} ωiωi+Δωi

其中, η {\eta} η学习速率。若感知机对样本的预测正确的话,即** y ′ y' y= y y y**,则感知机不发生任何变化。若其预测错误,则根据错误的程度进行相应权重的调整。

img

左面三个是通过线性分割实现,而最右侧的异或则无法通过线性分割实现。

学习率

学习率是每次迭代中成本函数最小化的量,梯度下降到成本函数最小值所对应的速率就是学习率。

img

成本/损失函数

当建立一个神经网络的时候,神经网络会试图将输出预测尽可能地接近实际值。使用成本函数函数来衡量网络的准确性。成本函数会在发生错误的时候处罚网络。
目的是为了能够提高我们的预测精度,减少误差,从而最大限度的降低成本。最优化的输出即使成本/损失函数最小的输出。

梯度下降

梯度下降是最小化成本的优化算法,找到最小化的损失函数和模型参数值。

5.3 BP神经网络(误差逆传播)

①BP神经网络等于叠加多个感知机来实现非线性可分。(最少3层)

②梯度下降策略:以目标的负梯度方向对参数进行调整(此外还有牛顿法、最小二乘法等策略)

③第K个训练例的均方误差:

④更新权重

基本原理与感知机相同。

神经网络的思路总结:

  • 搜集数据集( x i {x}_{i} xi,y),将 x i {x}_{i} xi代入初始的神经网络模型,计算估计值 y ^ \hat{y} y^

  • 根据 y ^ \hat{y} y^与y的差异不断更改权重 ω i {\omega}_{i} ωi,使其误差尽可能的小(梯度下降)

  • 大量数据训练后,再输入新的数据x,模型就可以求出y用于分类/预测/评价了

5.4 全局最小与局部极小

  • 局部最小值是在某一区域内,函数的取值达到了最小,但是如果将这个区域扩展到定义域上来,那么这个局部最小值就不一定是最小的。

  • 全局最小值,是在定义域内,函数值最小。全局最小一定是局部最小值,但“局部极小 ” 不一定是“全局最小 ”。因此我们的目标是找到 “ 全局最小 ”。

  • 可能存在多个局部极小值,但却只会有一个全局最小值。

    img

5.5 其他常见神经网络

RBF网络

  • BP 网络
img
  • RBF 网络:
img
  • **径向基函数:**是一个取值仅依赖于到原点距离的实值函数。此外,也可以按到某一中心点c的距离来定义。
  • **RBF 网络结构:**RBF Network 通常只有三层。输入层、中间层计算输入 x 矢量与样本矢量 c 欧式距离的值,输出层算它们的线性组合。
  • 训练 RBF 网络步骤:
    • 第一步,确定神经元中心,常用的方法包括随机采样、聚类。
    • 第二步,利用 BP 算法来确定参数。
    • img
RBF 与 BP 最重要的区别

1 中间层神经元的区别。

  • RBF: 神经元是一个以gaussian函数为核函数的神经元。

2 中间层数的区别。

  • 中间层只有一层。经过训练后每一个神经元得以确定输入权重:即每一个神经元知道要在什么样的输入值下引起最大的响应。

3 运行速度的区别。

  • 原因是因为层数,层数越少,需要确定的权重(weight)越少,越快。
  • 为什么三层可以做这么多层的事儿?原因是核函数的输出: 是一个局部的激活函数。在中心点那一点有最大的反应;越接近中心点则反应最大,远离反应成指数递减。

ART网络

  • **竞争型学习:**是神经网络中一种常用的无监督学习策略,在使用该策略时,网络的输出神经元相互竞争,每一时刻仅有一个竞争获胜的神经元被激活,其他神经元的状态被抑制,这种机制也称 “胜者通吃” 原则。ART 就是竞争型学习的重要代表。

  • ART 网络:

    该网络由比较层、识别层、识别阈值和重置模块构成。

    • 比较层:负责接收输入样本,并将其传递给识别层神经元。
    • 识别层:识别层每个神经元对应一个模式类,神经元数目可在训练过程中动态增长以增加新的模式类。
img img
  • **阈值:**显然,识别阈值对 ART 网络的性能有重要影响,当识别阈值较高时,输入样本会被分成较多、较精细的模式类,而如果识别阈值较低,则会产生比较少、比较粗略的模式类。
  • **ART 优点:**可进行增量学习或在线学习。

SOM网络

级联相关网络

Elman网络

Boltzmann机

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3281014.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Vue组件库移动端预览实现原理

引言 大家如果使用过移动端组件库&#xff08;比如&#xff1a;Vant&#xff09;&#xff0c;会发现在网站右侧有一个手机端的预览效果。 而且这个手机端预览的内容和外面的组件代码演示是同步的&#xff0c;切换组件的时候&#xff0c;移动端预览的内容也会发生相应的变化。 …

守护线程(Daemon Threads)详解:与非守护线程的区别

守护线程&#xff08;Daemon Threads&#xff09;详解&#xff1a;与非守护线程的区别 1、守护线程是什么&#xff1f;2、守护线程与非守护线程的区别2.1 JVM关闭行为2.2 任务性质2.3 线程设置2.4 示例代码 3、总结 &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收…

pytorch 绘制Depth Anything网络结构

pytorch 绘制模型的网络结构有很多中方法&#xff0c;个人比较喜欢 torchview 生成的 Graphviz 风格的图片。 Graphviz介绍 Graphviz是一款开源的图形可视化软件&#xff0c;其名称来源于“Graph Visualization Software”的缩写。它通过使用一种名为DOT的描述语言来定义图形…

不踩雷的护眼大路灯有哪些?五款盲选不踩雷的护眼大路灯推荐

不踩雷的护眼大路灯有哪些&#xff1f;作为一名专业的实测博主温馨提示大家&#xff0c;虽然护眼落地灯是个好东西&#xff0c;它能够提供柔和舒适的环境光&#xff0c;减少对眼睛的伤害&#xff0c;但是千万别乱买跟风&#xff0c;盲目入手踩雷率80%以上。那么如何辨别一盏护眼…

创客项目秀 | 基于 XIAO 开发板的语音向导

背景 柴火创客空间作为大湾区科技创新的窗口&#xff0c;每年到访空间的社区伙伴众多&#xff0c;为了更好的进行空间信息交互&#xff0c;我们希望有一个装置是可以解决&#xff1a;当空间管理员不在现场的时候&#xff0c;到访者可以通过装置获得清晰的介绍与引导。 为了解…

vue2 封装插槽组件

安装 element-ui npm install element-ui --save ---force main.js 导入 import Vue from vue; import ElementUI from element-ui; import element-ui/lib/theme-chalk/index.css; import App from ./App.vue; Vue.use(ElementUI); new Vue({ el: #app, render: h > h(Ap…

全渠道AI数字化商品管理 零售品牌增长“超级引擎”

随着“流量红利”时代的终结 品牌面临增速放缓、利润下滑的双重挑战。 消费者的诉求日益理性和个性化&#xff0c; 国内外品牌角逐市场份额 A1、大数据等先进技术迅猛发展 品牌商品计划管理变得更加复杂而多维。 零售品牌正加速数字化与全渠道融合以应对挑战。 可持续盈利…

对于一家企业来说,电气数字化是否有那么重要?

时代大背景下&#xff0c;尤其是在复杂的国际与社会环境交织之中&#xff0c;全社会的“数字化”转型已成必然之势。对于电子产业而言&#xff0c;“数字化”无疑是重大机遇。 众所周知&#xff0c;在蒸汽机时代&#xff0c;身为机械工程师堪称幸运&#xff0c;彼时涌现出众多…

MySQL 将查询结果导出到文件(select … into Statement)

我们经常会遇到需要将SQL查询结果导出到文件&#xff0c;以便后续的传输或数据分析的场景。为了满足这个需求&#xff0c;MySQL的select语句提供了into子句可以将的查询结果直接导出到文本文件。本文就MySQL中select…into的用法进行演示。 文章目录 一、select…into语句简介…

AWS账号注册:AWS 用借记卡注册是否有风险?

亚马逊云服务&#xff08;Amazon Web Services&#xff0c;简称 AWS&#xff09;作为全球领先的云服务提供商&#xff0c;吸引了众多企业和个人用户。注册 AWS 账户时&#xff0c;提供支付方式是必要的步骤&#xff0c;许多用户会选择使用借记卡来完成注册。那么&#xff0c;使…

idea、webstorm、navicat等2024大佬总结亲测可用

宝藏网址&#xff0c;亲测可用。 关于JetBrains全家桶激活。 扫码关注&#xff1a;JAVA和人工智能。回复 idea 或 webStorm 或 navicat 获取 仅学习使用&#xff0c;不要用于商业用途&#xff01;

【剑指offer】

剑指offer 面试题67&#xff1a;字符串转成整数面试题1&#xff1a;赋值运算符函数面试题3&#xff1a;数组中重复的数字 面试题67&#xff1a;字符串转成整数 LeedCode&#xff1a;LCR 192. 把字符串转换成整数 (atoi) 测试atoi的功能和异常效果 #include <iostream> #…

二叉树的介绍及其顺序结构的实现

Hello, 亲爱的小伙伴们&#xff0c;你们的作者菌又回来了&#xff0c;之前我们学习了链表、顺序表、栈等常见的数据结构&#xff0c;今天我们将紧跟之前的脚步&#xff0c;继续学习二叉树。 好&#xff0c;咱们废话不多说&#xff0c;开始我们今天的正题。 1.树 1.1树的概念和…

vue3框架Arco Design输入邮箱选择后缀

使用&#xff1a; <a-form-item field"apply_user_email" label"邮箱&#xff1a;" ><email v-model"apply_user_email" class"inputborder topinputw"></email> </a-form-item>import email from /componen…

Java语言程序设计基础篇_编程练习题***15.35/15.34 (动画:自回避随机漫步)

***15.34 (模拟&#xff1a;自回避随机漫步) 在一个网格中的自回避漫步是指从一个点到另一点的过程中&#xff0c;不重复两次访问一个点。自回避漫步已经广泛应用在物理、化学和数学学科中。它们可以用来模拟像溶剂和聚合物这样的链状物。编写一个程序&#xff0c;显示一个从中…

Educational Codeforces Round 168 (Rated for Div. 2)

据说这场比赛非常简单&#xff0c;但本蒟蒻却认为比以往还要难(;༎ຶД༎ຶ) A.Strong Password 输入样例&#xff1a; 4 a aaa abb password输出样例&#xff1a; wa aada abcb pastsword思路&#xff1a; 我们只需在原来字符串中连续的两个字符之间插入一个不同的字符&…

React 学习——自定义Hook实现,使用规则

使用规则&#xff1a; 只能在组件中或者其他自定义Hook函数中调用只能在组件的顶层调用&#xff0c;不能嵌套在 if、for、其他函数中 import { useState } from "react"// 封装函数 function useToggle(){const [show,setShow] useState(true);const toggle ()&…

机器学习算法——常规算法,在同的业务场景也需要使用不同的算法(二)

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;开发者-曼亿点 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 曼亿点 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a…

火山引擎VeDI数据技术分享:两个步骤,为Parquet降本提效

更多技术交流、求职机会&#xff0c;欢迎关注字节跳动数据平台微信公众号&#xff0c;回复【1】进入官方交流群 作者&#xff1a;王恩策、徐庆 火山引擎 LAS 团队 火山引擎数智平台 VeDI 是火山引擎推出的新一代企业数据智能平台&#xff0c;基于字节跳动数据平台多年的“数据…

迪文屏使用记录

项目中要使用到迪文屏&#xff0c;奈何该屏资料太琐碎&#xff0c;找的人头皮发麻&#xff0c;遂进行相关整理。 屏幕&#xff1a;2.4寸电容屏 型号&#xff1a;DWG32240C024_03WTC 软件&#xff1a;DGUS_V7.647 1.竖屏横显 打开软件左下方的配置文件生成工具&#…