【Python大语言模型系列】基于阿里云人工智能平台采用P-Tuning v2微调ChatGLM2-6B大模型(完整教程)

这是我的第331篇原创文章。

一、引言

        P-Tuning 是一种对预训练语言模型进行少量参数微调的技术。所谓预训练语言模型,就是指在大规模的语言数据集上训练好的、能够理解自然语言表达并从中学习语言知识的模型。P-Tuning 所做的就是根据具体的任务,对预训练的模型进行微调,让它更好地适应于具体任务。相比于重新训练一个新的模型,微调可以大大节省计算资源,同时也可以获得更好的性能表现。

        前文回顾:

        【Python大语言模型系列】基于阿里云人工智能平台部署ChatGLM2-6B(完整教程)

        ChatGLM2-6B 环境已经有了,接下来开始模型微调,这里我们使用官方的 P-Tuning v2 对 ChatGLM2-6B 模型进行参数微调,P-Tuning v2 将需要微调的参数量减少到原来的 0.1%,再通过模型量化、Gradient Checkpoint 等方法,最低只需要 7GB 显存即可运行。

二、实现过程

2.1 安装依赖

# 运行微调需要 4.27.1 版本的 transformers
pip install transformers==4.27.1
pip install rouge_chinese nltk jieba datasets# 禁用 W&B,如果不禁用可能会中断微调训练
export WANDB_DISABLED=true

2.2 准备数据集

为了简化,我只准备了5条测试数据,分别保存为 train.json 和 dev.json,放到 ptuning 目录下,实际使用的时候肯定需要大量的训练数据。

图片

train.json 和 dev.json的内容如下:

图片

2.3 调整脚本参数

修改 train.sh 和 evaluate.sh 中的 train_file、validation_file和test_file为你自己的 JSON 格式数据集路径,并将 prompt_column 和 response_column 改为 JSON 文件中输入文本和输出文本对应的 KEY。

可能还需要增大 max_source_length 和 max_target_length 来匹配你自己的数据集中的最大输入输出长度。并将模型路径 THUDM/chatglm-6b 改为你本地的模型路径。

train.sh修改如下:

图片

evalution.sh修改如下:

图片

2.4 执行训练脚本

bash train.sh

图片

训练过程会比较慢,差不多花了一个小时,最终训练完成:

图片

2.5 执行推理脚本

bash evalution.sh

图片

执行完成后,会生成评测文件,评测指标为中文 Rouge score 和 BLEU-4。生成的结果保存在 ./output/chatglm-6b-pt-32-2e-2/generated_predictions.txt。

我们准备了 5 条推理数据,所以相应的在文件中会有 5 条评测数据,labels 是 dev.json 中的预测输出,predict 是 ChatGLM-6B 生成的结果,对比预测输出和生成结果,评测模型训练的好坏。如果不满意调整训练的参数再次进行训练。

图片

2.6 部署微调后的模型

可以修改 web_demo.sh 的内容以符合实际情况,将 pre_seq_len 改成你训练时的实际值,将 THUDM/chatglm-6b 改成本地的模型路径。web_demo.sh修改如下:

图片

执行:

bash web_demo.sh

2.7 微调前后对比

原始模型:

图片

微调后的模型:

图片

三、小结

微调可以对原有模型作领域知识的训练,相关领域知识需要进行整理成语料,语料越充分相对来说模型作预测越准,还要结合调参,反复地训练,才有可能起到一定的效果。

作者简介:

读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。需要数据集和源码的小伙伴可以关注底部公众号添加作者微信。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3266348.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

单元测试的最佳实践

整体架构 合适的架构可以提升可测试性。比如菱形对称架构的模块化和解耦特性使得系统各个部分可以独立进行单元测试。这不仅提高了测试的效率,还能够减少测试的依赖性,提高测试准确性。 代码设计 代码设计和可测试性有密切关联。强烈建议一个方法的代码行…

opencascade AIS_MouseGesture AIS_MultipleConnectedInteractive源码学习

AIS_MouseGesture //! 鼠标手势 - 同一时刻只能激活一个。 enum AIS_MouseGesture { AIS_MouseGesture_NONE, //!< 无激活手势 // AIS_MouseGesture_SelectRectangle, //!< 矩形选择&#xff1b; //! 按下按钮开始&#xff0c;移动鼠标定义矩形&…

分布式相关理论详解

目录 1.绪论 2.什么是分布式系统&#xff0c;和集群的区别 3.CAP理论 3.1 什么是CAP理论 3.2 一致性 3.2.1 计算机的一致性说明 1.事务中的一致性 2.并发场景下的一致性 3.分布式场景下的一致性 3.2.2 一致性分类 3.2.3 强一致性 1.线性一致性 a) 定义 a) Raft算法…

跟李沐学AI:池化层

目录 二维最大池化 填充、步幅和多个通道 平均池化层 池化层总结 二维最大池化 返回滑动窗口中的最大值。 图为池化窗口形状为 22 的最大池化层。着色部分是第一个输出元素&#xff0c;以及用于计算这个输出的输入元素: max(0,1,3,4)4。池化层与卷积层类似&#xff0c;不断…

职业本科专业群的生成机制研究

一、引言 随着我国经济结构的持续优化升级和职业教育体系的不断深化&#xff0c;职业本科教育作为连接高等教育与职业技能培养的桥梁&#xff0c;其专业群构建已成为提升教育质量与服务产业升级的关键。本文基于知识整合的视角&#xff0c;采用案例分析法&#xff0c;从生成决…

自定义协议(应用层协议)——网络版计算机基于TCP传输协议

应用层&#xff1a;自定义网络协议&#xff1a;序列化和反序列化&#xff0c;如果是TCP传输的&#xff1a;还要关心区分报文边界&#xff08;在序列化设计的时候设计好&#xff09;——粘包问题 1、首先想要使用TCP协议传输的网络&#xff0c;服务器和客户端都应该要创建自己…

Pytorch使用教学8-张量的科学运算

在介绍完PyTorch中的广播运算后&#xff0c;继续为大家介绍PyTorch的内置数学运算&#xff1a; 首先对内置函数有一个功能印象&#xff0c;知道它的存在&#xff0c;使用时再查具体怎么用其次&#xff0c;我还会介绍PyTorch科学运算的注意事项与一些实用小技巧 1 基本数学运算…

wpf中轮询显示图片

本文的需求是&#xff0c;在一个文件夹中&#xff0c;放一堆图片的集合&#xff0c;然后在wpf程序中&#xff0c;按照定时的方式&#xff0c;循序显示照片。 全部代码 1.声明一个PictureInfo类 namespace WpfApp1 {public class PictureInfo{public string? FileName { get; …

【网络安全学习】 SQL注入01:基础知识

&#x1f4bb; 1. 什么是SQL注入 SQL注入是一种针对Web程序中数据库层的安全漏洞的攻击方式。它利用了程序对用户输入数据合法性的判断或过滤不严&#xff0c;允许攻击者在设计不良的程序中添加额外的SQL语句&#xff0c;从而执行计划外的命令或访问未授权的数据。攻击者可以通…

视觉SLAM第一讲

第一讲-预备知识 SLAM是什么&#xff1f; SLAM&#xff08;Simultaneous Localization and Mapping&#xff09;是同时定位与地图构建。 它是指搭载特定传感器的主体&#xff0c;在没有环境先验信息的情况下&#xff0c;于运动过程中建立环境的模型&#xff0c;同时估计自己…

Chapter 16 Python文件操作(上)

欢迎大家订阅【Python从入门到精通】专栏&#xff0c;一起探索Python的无限可能&#xff01; 文章目录 前言一、文件的编码二、文件的读取1.打开文件2.读取文件3.关闭文件 前言 Python作为一种高效且易于学习的编程语言&#xff0c;提供了一系列强大的文件操作功能&#xff0c…

C++STL详解(五)——list类的接口详解

一.list的介绍 list容器的底层是双向循环带头链表&#xff0c;在CPP中&#xff0c;我们对双向循环带头链表进行了一定程度的封装。 如果你不了解双向链表&#xff0c;那么可以浏览此片博文&#xff1a;双向链表 二.list的定义方式以及赋值 2.1list的构造方式 在这里我们要…

idea中如何创建yml、yaml、properties配置文件

目录 1、配置文件 2、创建yml配置文件 3、配置文件的优先级 1、配置文件 我们一直使用springboot项目创建完毕后自带的application.properties进行属性的配置&#xff0c;那其实呢&#xff0c;在springboot项目当中是支持多种配置方式的&#xff0c;除了支持properties配置文件…

华为od机试真题:考勤信息(Python)

题目描述 公司用一个字符串来表示员工的出勤信息 absent:缺勒late: 迟到leaveearly: 早退present: 正常上班 现需根据员工出勤信息&#xff0c;判断本次是否能获得出勤奖&#xff0c;能获得出勤奖的条件如下: 缺勤不超过一次&#xff0c;没有连续的迟到/早退:任意连续7次考…

计算机二级刷题(讲+练)

【拯救者】二级C语言历届真题解析(二级期末升本均适用) 前提: 学过C语言, 想要速成可以看我的C语言课程 3套真题 赠送1套预测题(带解析)

【SOC 芯片设计 DFT 学习专栏 -- DFT DRC规则检查】

请阅读【嵌入式及芯片开发学必备专栏】 请阅读【芯片设计 DFT 学习系列 】 如有侵权&#xff0c;请联系删除 转自&#xff1a; 芯爵ChipLord 2024年07月10日 12:00 浙江 文章目录 概述DRC的概念Tessent DRC检查的概述时钟相关检查扫描相关检查BIST规则检查预DFT时钟规则检查 …

基于Vue开发的前端系统中寻找后端API及其参数

前言 在日常渗透工作中&#xff0c;常常遇到后台系统&#xff0c;且有相当一部分是自研开发的系统&#xff0c;没有源代码&#xff0c;没有弱口令漏洞&#xff0c;也没有swagger、webpack泄露等。幸运的是&#xff0c;这些系统几乎都是前后端分离的架构&#xff0c;而我发现使…

【OpenCV C++20 学习笔记】调节图片对比度和亮度(像素变换)

调节图片对比度和亮度&#xff08;像素变换&#xff09; 原理像素变换亮度和对比度调整 代码实现更简便的方法结果展示 γ \gamma γ校正及其实操案例线性变换的缺点 γ \gamma γ校正低曝光图片矫正案例代码实现 原理 关于OpenCV的配置和基础用法&#xff0c;请参阅本专栏的其…

视频号矩阵系统,AI自动生成文案,实现批量上传视频和定时发布

在数字化浪潮席卷全球的今天&#xff0c;视频内容已成为信息传播的重要载体。然而&#xff0c;对于众多自媒体创作者和企业而言&#xff0c;如何高效、精准地发布视频内容&#xff0c;依然是一个不小的挑战。幸运的是&#xff0c;随着技术的不断进步&#xff0c;视频号矩阵系统…

0725,进程间传递文件描述符,socketpair + sendmsg/recvmsg

我要碎掉了我要碎掉了我要碎掉了 上课喵&#xff1a; pipe匿名管道的问题 #include <func.h>int main() {int fds[2];pipe(fds);pid_t pidfork();if(pid>0){ //fatherclose(fds[0]);//close readint fdopen("file2.txt",O_RDONLY);printf("father: …