视觉SLAM第一讲

第一讲-预备知识

SLAM是什么?

SLAM(Simultaneous Localization and Mapping)是同时定位与地图构建。

它是指搭载特定传感器的主体,在没有环境先验信息的情况下,于运动过程中建立环境的模型,同时估计自己的运动

SLAM 的目的是解决“定位”与“地图构建”这两个问题。当用相机作为传感器时,我们要做的就是根据一张张连续运动的图像(它们形成了一段视频),从中快速推断、跟踪相机的运动,以及周围环境的情况。

本书中会介绍SLAM 所牵涉的背景知识,例如射影几何、计算机视觉、状态估计理论、李群李代数等。完整的 SLAM 系统分成几个模块:视觉里程计、后端优化、建图,以及回环检测

代码

本书所有源代码均托管在 GitHub 上:

GitHub - gaoxiang12/slambook2: edition 2 of the slambook

线性代数基础知识

线性代数是研究线性问题的代数理论。线性是指可加性和比例性(齐次性)。

从实际中来的数学问题无非分为两类:一类线性问题,一类非线性问题。线性问题是研究最久、理论最完善的;而非线性问题则可以在一定基础上转化为线性问题求解。因此遇到一个具体的问题,首先判断是线性还是上非线性的;其次若是线性问题如何处理,若是非线性问题如何转化为线性问题。

行列式的几何意义是指行列式的行向量或列向量所构成的平行多面体的有向体积。

矩阵的几何意义:线性空间上的线性映射。其作用的主要过程是对一个向量进行旋转和缩放的综合过程(即线性变换的过程)。可以把矩阵看做是列向量的数组。

矩阵乘法不满足交换律,左乘不等于右乘。

高斯分布

高斯分布,又称为正态分布,是一种在概率论和统计学中非常重要的连续概率分布。

高斯分布的定义

一个一维的高斯分布由两个参数确定:均值(mean)( μ \mu μ)和方差(variance)( σ 2 \sigma^2 σ2)。其概率密度函数(PDF)为:
在这里插入图片描述

特性
  1. 对称性:正态分布的图形是关于均值 ( μ \mu μ) 对称的钟形曲线。
  2. 均值( μ \mu μ):正态分布的中心位置。
  3. 方差( σ 2 \sigma^2 σ2)和标准差( σ \sigma σ):决定分布的宽度,标准差越大,分布越宽,曲线越平坦。
  4. 68-95-99.7 规则:在正态分布中,大约68%的数据落在均值( ± \pm ±)1个标准差范围内,大约95%的数据落在均值( ± \pm ±)2个标准差范围内,大约99.7%的数据落在均值( ± \pm ±)3个标准差范围内。
多维高斯分布

多维(即多变量)高斯分布或正态分布是指在高维空间中的正态分布,它由均值向量 ( μ \mathbf{\mu} μ) 和协方差矩阵 ( Σ \mathbf{\Sigma} Σ) 确定。其概率密度函数为:
$f(\mathbf{x}) = \frac{1}{(2\pi)^{k/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \mathbf{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})\right) $

其中 ( x \mathbf{x} x) 是 (k) 维向量,( μ \mathbf{\mu} μ) 是 (k) 维均值向量,( Σ \mathbf{\Sigma} Σ) 是 ( k × k k \times k k×k) 协方差矩阵。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3266334.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

Chapter 16 Python文件操作(上)

欢迎大家订阅【Python从入门到精通】专栏,一起探索Python的无限可能! 文章目录 前言一、文件的编码二、文件的读取1.打开文件2.读取文件3.关闭文件 前言 Python作为一种高效且易于学习的编程语言,提供了一系列强大的文件操作功能&#xff0c…

C++STL详解(五)——list类的接口详解

一.list的介绍 list容器的底层是双向循环带头链表,在CPP中,我们对双向循环带头链表进行了一定程度的封装。 如果你不了解双向链表,那么可以浏览此片博文:双向链表 二.list的定义方式以及赋值 2.1list的构造方式 在这里我们要…

idea中如何创建yml、yaml、properties配置文件

目录 1、配置文件 2、创建yml配置文件 3、配置文件的优先级 1、配置文件 我们一直使用springboot项目创建完毕后自带的application.properties进行属性的配置,那其实呢,在springboot项目当中是支持多种配置方式的,除了支持properties配置文件…

华为od机试真题:考勤信息(Python)

题目描述 公司用一个字符串来表示员工的出勤信息 absent:缺勒late: 迟到leaveearly: 早退present: 正常上班 现需根据员工出勤信息,判断本次是否能获得出勤奖,能获得出勤奖的条件如下: 缺勤不超过一次,没有连续的迟到/早退:任意连续7次考…

计算机二级刷题(讲+练)

【拯救者】二级C语言历届真题解析(二级期末升本均适用) 前提: 学过C语言, 想要速成可以看我的C语言课程 3套真题 赠送1套预测题(带解析)

【SOC 芯片设计 DFT 学习专栏 -- DFT DRC规则检查】

请阅读【嵌入式及芯片开发学必备专栏】 请阅读【芯片设计 DFT 学习系列 】 如有侵权,请联系删除 转自: 芯爵ChipLord 2024年07月10日 12:00 浙江 文章目录 概述DRC的概念Tessent DRC检查的概述时钟相关检查扫描相关检查BIST规则检查预DFT时钟规则检查 …

基于Vue开发的前端系统中寻找后端API及其参数

前言 在日常渗透工作中,常常遇到后台系统,且有相当一部分是自研开发的系统,没有源代码,没有弱口令漏洞,也没有swagger、webpack泄露等。幸运的是,这些系统几乎都是前后端分离的架构,而我发现使…

【OpenCV C++20 学习笔记】调节图片对比度和亮度(像素变换)

调节图片对比度和亮度(像素变换) 原理像素变换亮度和对比度调整 代码实现更简便的方法结果展示 γ \gamma γ校正及其实操案例线性变换的缺点 γ \gamma γ校正低曝光图片矫正案例代码实现 原理 关于OpenCV的配置和基础用法,请参阅本专栏的其…

视频号矩阵系统,AI自动生成文案,实现批量上传视频和定时发布

在数字化浪潮席卷全球的今天,视频内容已成为信息传播的重要载体。然而,对于众多自媒体创作者和企业而言,如何高效、精准地发布视频内容,依然是一个不小的挑战。幸运的是,随着技术的不断进步,视频号矩阵系统…

0725,进程间传递文件描述符,socketpair + sendmsg/recvmsg

我要碎掉了我要碎掉了我要碎掉了 上课喵&#xff1a; pipe匿名管道的问题 #include <func.h>int main() {int fds[2];pipe(fds);pid_t pidfork();if(pid>0){ //fatherclose(fds[0]);//close readint fdopen("file2.txt",O_RDONLY);printf("father: …

Idea2024 创建Meaven项目没有src文件夹

1、直接创建 新建maven项目&#xff0c;发现没有src/main/java 直接新建文件夹&#xff1a;右击项目名->new->Directory 可以看到idea给出了快捷创建文件夹的选项&#xff0c;可以根据需要创建&#xff0c;这里点击src/main/java 回车&#xff0c;可以看到文件夹已经创建…

用户管理与高级SQL语句(数据库管理与高可用)

1.表&#xff08;Table &#xff09; 数据库中的表与我们日常生活中使用的表格类似&#xff0c;它也是由行&#xff08;Row&#xff09; 和列&#xff08;Column&#xff09;组成的。列由同类的信息组成&#xff0c;每列又称为一个字段&#xff0c;每列的标题称为字段名。行包…

sql注入的专项练习 sqlilabs(含代码审计)

在做题之前先复习了数据库的增删改查&#xff0c;然后自己用本地的环境&#xff0c;在自己建的库里面进行了sql语句的测试&#xff0c;主要是回顾了一下sql注入联合注入查询的语句和sql注入的一般做题步骤。 1.获取当前数据库 2.获取数据库中的表 3.获取表中的字段名 一、sql…

51单片机嵌入式开发:19、STC89C52R控制LCD1602码表+数码管+后台数显(串口)

STC89C52R控制LCD1602码表数码管后台数显&#xff08;串口&#xff09; 1 概述1.1 项目概述1.2 项目组成部分1.3 功能描述 2 开发环境2.1 支持设备2.2 硬件电路 3 软件代码工程4 演示4.1 Proteus仿真4.2 实物演示 5 总结 1 概述 1.1 项目概述 本项目旨在利用STC89C52R单片机实…

联通智慧商业零售解决方案,旨在为全球零售企业提供低成本、高效能的组网与通信服务

联通智慧商业零售解决方案&#xff1a;驱动零售业全球布局与创新 在全球化的大背景下&#xff0c;零售业面临着前所未有的机遇与挑战。随着消费者需求的多样化和市场环境的快速变化&#xff0c;零售商必须不断寻求创新&#xff0c;以保持竞争力。中国联通国际&#xff0c;凭借…

优略解距离法—Topsis模型【清风数模学习笔记】

层次分析法的局限性 &#xff08;1&#xff09;决策层不能太多 &#xff08;2&#xff09;数据已知&#xff0c;使用层次分析法不准确 构造计算评分 相较于取卷面理论上的最高分&#xff08;100&#xff09;和最低分&#xff08;0&#xff09;&#xff0c;取分数区间上的最…

Golang | Leetcode Golang题解之第290题单词规律

题目&#xff1a; 题解&#xff1a; func wordPattern(pattern string, s string) bool {word2ch : map[string]byte{}ch2word : map[byte]string{}words : strings.Split(s, " ")if len(pattern) ! len(words) {return false}for i, word : range words {ch : patt…

CSS技巧专栏:一日一例 12 -纯CSS实现边框上下交错的按钮特效

CSS技巧专栏&#xff1a;一日一例 12 -纯CSS实现边框上下交错的按钮特效 大家好&#xff0c;今天我们来做一个上下边框交错闪动的按钮特效。 本例图片 案例分析 虽说这按钮给人的感觉就是上下两个边框交错变换了位置&#xff0c;但我们都知道border是没法移动的。那么这个按…

python实现接缝雕刻算法

python实现接缝雕刻算法 接缝雕刻算法步骤详解Python实现详细解释优缺点应用领域接缝雕刻算法(Seam Carving Algorithm)是一种内容感知的图像缩放技术,可以智能地改变图像的尺寸,而不会明显影响其重要内容。它通过动态规划的方式寻找图像中的“接缝”,即在图像中从上到下或…

排序系列 之 希尔排序

&#xff01;&#xff01;&#xff01;排序仅针对于数组哦本次排序是按照升序来的哦 介绍 英文名为ShellSort&#xff0c;又称“缩小增量排序”是直接插入排序算法的一种更高效的改进版本希尔排序是把记录按下标的指定步长分组&#xff0c;然后按照每组使用直接插入排序&#…