浅聊 Three.js 屏幕空间反射SSR-SSRShader

浅聊 Three.js 屏幕空间反射SSR(2)-SSRShader

前置基础
渲染管线中的相机和屏幕示意图

 -Z  (相机朝向的方向)|||       +--------------+  <- 屏幕/投影平面|       |              ||       |              ||       |     (f)      |  <- 焦距|       |              ||       |              ||       +--------------+|              ||              ||              O  <- 相机原点 (也称为视点)|              |||+---------------------- X (水平轴)
一、计算 viewPosition

根据深度图计算屏幕空间上的 视图位置。

float clipW = cameraProjectionMatrix[2][3] * viewZ+cameraProjectionMatrix[3][3];
vec3 viewPosition = getViewPosition( vUv, depth, clipW );
二、计算反射位置 d1viewPosition
vec3 viewNormal=getViewNormal( vUv );// 入射光线方向
vec3 viewIncidentDir=normalize(viewPosition);// 反射光线方向
vec3 viewReflectDir=reflect(viewIncidentDir, viewNormal);// 反射光线最大长度
float maxReflectRayLen=maxDistance/dot(-viewIncidentDir, viewNormal);// 反射位置
vec3 d1viewPosition = viewPosition + viewReflectDir * maxReflectRayLen;

请添加图片描述

处理反射位置在近平面(即 -cameraNear)之的情况

目标:
确保反射光线的目标位置 (d1viewPosition) 不在近平面之前。如果在近平面之前,则将其调整到近平面上。

if(d1viewPosition.z > -cameraNear){//https://tutorial.math.lamar.edu/Classes/CalcIII/EqnsOfLines.aspxfloat t= (-cameraNear - viewPosition.z) / viewReflectDir.z;d1viewPosition = viewPosition + viewReflectDir * t;
}
 ^ -z||||      * 视点(viewPosition)|       \|        \|------------ (近平面,z = -cameraNear)|          \|           \|            *|             \|              \|               * d1viewPosition (初始位置)|-------------------------------------> x

解释:
反射光线的参数方程:
P ( t ) = v i e w P o s i t i o n + t ∗ v i e w R e f l e c t D i r P(t) = viewPosition + t * viewReflectDir P(t)=viewPosition+tviewReflectDir

我们需要找到 t t t 使得:
P ( t ) . z = − c a m e r a N e a r P(t).z = -cameraNear P(t).z=cameraNear

因此,我们需要解方程:
v i e w P o s i t i o n . z + t ∗ v i e w R e f l e c t D i r . z = − c a m e r a N e a r viewPosition.z + t * viewReflectDir.z = -cameraNear viewPosition.z+tviewReflectDir.z=cameraNear

解这个方程,得到:
t = − c a m e r a N e a r − v i e w P o s i t i o n . z v i e w R e f l e c t D i r . z t = \frac{-cameraNear - viewPosition.z}{ viewReflectDir.z} t=viewReflectDir.zcameraNearviewPosition.z

最后, 调整反射后目标位置:
d 1 v i e w P o s i t i o n = v i e w P o s i t i o n + v i e w R e f l e c t D i r ∗ t ; d1viewPosition = viewPosition + viewReflectDir * t; d1viewPosition=viewPosition+viewReflectDirt;

三、计算反射位置在屏幕空间下的位置
// 屏幕分辨率
uniform vec2 resolution;// 视图空间转屏幕空间
vec2 viewPositionToXY(vec3 viewPosition){vec2 xy;vec4 clip = cameraProjectionMatrix * vec4(viewPosition,1);//clipxy = clip.xy;float clipW = clip.w;//NDCxy /= clipW;//uvxy = (xy + 1.) / 2.;//screenxy *=resolution;return xy;
}vec2 d1 = viewPositionToXY(d1viewPosition);
四、屏幕空间光线步进(Ray Marching)

参考: DDA 画直线算法

// 片段着色器中的当前像素坐标
vec2 d0 = gl_FragCoord.xy;vec2 d1 = viewPositionToXY(d1viewPosition);// x 和 y 方向上的距离
float xLen = d1.x-d0.x;
float yLen = d1.y-d0.y;// 两个点之间的欧几里得距离
float totalLen = length(d1-d0);// 在 x 和 y 方向上步数的最大值,用于决定采样的步数
float totalStep = max(abs(xLen), abs(yLen));// 每一步在 x 和 y 方向上的增量
float xSpan = xLen / totalStep;
float ySpan = yLen / totalStep;for(float i = 0.; i<float(MAX_STEP); i++) {if(i >= totalStep) break;vec2 xy = vec2(d0.x + i * xSpan, d0.y + i * ySpan);if(xy.x < 0. || xy.x > resolution.x || xy.y < 0. || xy.y > resolution.y) break;// 比例进度, 0~1float s = length(xy - d0) / totalLen;vec2 uv = xy / resolution;float d = getDepth(uv);// 当前像素的视图空间深度值float vZ = getViewZ(d);if(-vZ >= cameraFar) continue;float cW = cameraProjectionMatrix[2][3] * vZ+cameraProjectionMatrix[3][3];vec3 vP = getViewPosition( uv, d, cW );// https://comp.nus.edu.sg/~lowkl/publications/lowk_persp_interp_techrep.pdffloat recipVPZ = 1. / viewPosition.z;// 基于插值得到的透视矫正后的深度值float viewReflectRayZ = 1. / (recipVPZ + s * (1. / d1viewPosition.z - recipVPZ));if(viewReflectRayZ <= vZ){// 只处理无限厚度的情况vec3 vN = getViewNormal(uv);if(dot(viewReflectDir,vN) >= 0.) continue;float distance = pointPlaneDistance(vP, viewPosition, viewNormal);if(distance > maxDistance) break;vec4 reflectColor = texture2D(tDiffuse, uv);gl_FragColor = reflectColor;}
}

只处理 viewReflectRayZ <= vZ的情况

^ -z|||            * viewPosition (反射的起始位置)|             \|              \|               \|                \|                 \|                  * viewReflectRayZ  (矫正后的深度值)|                   \|                    \|                     * vZ (当前像素深度值)|                      \|                       \|                        \|                         \|-------------------------------------> x
  • 在透视投影下,深度值绝对值越小,表示距离相机越近。在进行光线行进时,我们希望光线从起点出发,经过所有可能的深度值,直到目标位置

  • viewReflectRayZ 是矫正后的深度值,它应该始终小于或等于 vZ,以确保光线距离起点从近到远进行插值和计算。

  • 如果 viewReflectRayZ 大于 vZ, 这种情况可能导致光线跳过当前像素,直接到达更远的像素,产生穿透问题

  • 通过确保 viewReflectRayZ <= vZ,可以保证光线在行进过程中深度值是连续变化的,从而提高插值的精度,避免因不连续的深度值变化而产生的伪影

只处理钝角的情况
点积大于或等于零,表示这两个单位向量的夹角小于或等于 90 度。

点到平面距离

float pointPlaneDistance(vec3 point,vec3 planePoint,vec3 planeNormal){// https://mathworld.wolfram.com/Point-PlaneDistance.html https://en.wikipedia.org/wiki/Plane_(geometry) http://paulbourke.net/geometry/pointlineplane/float a = planeNormal.x;float b = planeNormal.y;float c = planeNormal.z;float x0 = point.x;float y0 = point.y;float z0 = point.z;float x = planePoint.x;float y = planePoint.y;float z = planePoint.z;float d = -(a * x + b * y + c * z);float distance = (a * x0 + b * y0 + c * z0 + d)/sqrt(a * a + b * b + c * c);return distance;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3249946.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

One-Class SVM

前提知识&#xff1a;支持向量机&#xff08;SVM&#xff09;-CSDN博客 主要思想 找一个超平面将样本中的正例圈出来&#xff0c;预测就是用这个超平面做决策&#xff0c;在圈内的样本就认为是正样本&#xff0c;圈外的是其他样本&#xff0c;如图1所示&#xff1a; 图1 OSVM…

PostgreSQL 中如何处理数据的唯一性约束?

&#x1f345;关注博主&#x1f397;️ 带你畅游技术世界&#xff0c;不错过每一次成长机会&#xff01;&#x1f4da;领书&#xff1a;PostgreSQL 入门到精通.pdf 文章目录 PostgreSQL 中如何处理数据的唯一性约束&#xff1f;一、什么是唯一性约束二、为什么要设置唯一性约束…

酷炫末世意境背景404单页HTML源码

源码介绍 酷炫末世意境背景404单页HTML源码&#xff0c;背景充满着破坏一切的意境&#xff0c;彷佛末世的到来&#xff0c;可以做网站错误页或者丢失页面&#xff0c;将下面的代码放到空白的HTML里面&#xff0c;然后上传到服务器里面&#xff0c;设置好重定向即可 效果预览 …

经典神经网络(14)T5模型原理详解及其微调(文本摘要)

经典神经网络(14)T5模型原理详解及其微调(文本摘要) 2018 年&#xff0c;谷歌发布基于双向 Transformer 的大规模预训练语言模型 BERT&#xff0c;而后一系列基于 BERT 的研究工作如春笋般涌现&#xff0c;预训练模型也成为了业内解决 NLP 问题的标配。 2019年&#xff0c;谷歌…

拖拽上传(预览图片)

需求 点击上传图片&#xff0c;或直接拖拽图片到红色方框里面也可上传图片&#xff0c;上传后预览图片 效果 实现 <!DOCTYPE html> <html lang"zh-cn"><head><meta charset"UTF-8"><meta name"viewport" content&…

redis server response timeout(3000ms) occurred after 3 retry attempts异常分析

读取redis数据报超时错误&#xff1a; Redis server response timeout (3000 ms) occured after 3 retry attempts2024-07-18 17:07:57.124 ERROR [e8f07b0a671c08311dff589827897232] [http-nio-9528-exec-6] c.z.i.u.m.c.e.BaspUserExceptionHandler.exceptionHandler:83 - R…

FlinkSql概述

FlinkSql概述 一、Flink SQL概述1.流处理中的表2.将流转换成动态表3.将动态表转换为流 二、时间属性1.事件时间2.处理时间 一、Flink SQL概述 Table API和SQL是最上层的API&#xff0c;在Flink中这两种API被集成在一起&#xff0c;SQL执行的对象也是Flink中的表&#xff08;Tab…

SQL每日一题:删除重复电子邮箱

题干 表: Person -------------------- | Column Name | Type | -------------------- | id | int | | email | varchar | -------------------- id 是该表的主键列(具有唯一值的列)。 该表的每一行包含一封电子邮件。电子邮件将不包含大写字母。 编写解决方案 删除 所有重复…

js vue axios post 数组请求参数获取转换, 后端go参数解析(gin框架)全流程示例

今天介绍的是前后端分离系统中的请求参数 数组参数的生成&#xff0c;api请求发送&#xff0c;到后端请求参数接收的全过程示例。 为何会有这个文章&#xff1a;后端同一个API接口同时处理单条或者多条数据&#xff0c;这样就要求我们在前端发送请求参数的时候需要统一将请…

ViT(论文解读):An Image is worth 16*16 words

研究问题 虽然transformer已经成为NLP领域的标准&#xff08;BERT、GPT3、T5&#xff09;&#xff0c;但是在CV领域很有限。在CV中&#xff0c;自注意力要么和CNN一起用&#xff0c;要么替换CNN中某个组件后保持整体结构不变。本文证明了对CNN的这种依赖并不必要&#xff0c;在…

简单工厂、工厂方法与抽象工厂之间的区别

简单工厂、工厂方法与抽象工厂之间的区别 1、简单工厂&#xff08;Simple Factory&#xff09;1.1 定义1.2 特点1.3 示例场景 2、工厂方法&#xff08;Factory Method&#xff09;2.1 定义2.2 特点2.3 示例场景 3、抽象工厂&#xff08;Abstract Factory&#xff09;3.1 定义3.…

关于Centos停更yum无法使用的解决方案

最近在使用Centos7.9系统时候&#xff0c;发现yum仓库无法进行安装软件包了&#xff0c;官方说2024年6月30日进行停更&#xff0c;停更后无法提供对应的软件服务。 我在使用yum安装包的时候发现确实不能使用官方服务了&#xff1a; CentOS停更的影响 CentOS停止更新之后&#…

CentOS 7报错:yum命令报错 “ Cannot find a valid baseurl for repo: base/7/x86_6 ”

参考连接&#xff1a; 【linux】CentOS 7报错&#xff1a;yum命令报错 “ Cannot find a valid baseurl for repo: base/7/x86_6 ”_centos linux yum search ifconfig cannot find a val-CSDN博客 Centos7出现问题Cannot find a valid baseurl for repo: base/7/x86_64&…

韦东山嵌入式linux系列-驱动进化之路:设备树的引入及简明教程

1 设备树的引入与作用 以 LED 驱动为例&#xff0c;如果你要更换LED所用的GPIO引脚&#xff0c;需要修改驱动程序源码、重新编译驱动、重新加载驱动。 在内核中&#xff0c;使用同一个芯片的板子&#xff0c;它们所用的外设资源不一样&#xff0c;比如A板用 GPIO A&#xff0c…

大数据采集工具——Flume简介安装配置使用教程

Flume简介&安装配置&使用教程 1、Flume简介 一&#xff1a;概要 Flume 是一个可配置、可靠、高可用的大数据采集工具&#xff0c;主要用于将大量的数据从各种数据源&#xff08;如日志文件、数据库、本地磁盘等&#xff09;采集到数据存储系统&#xff08;主要为Had…

2024-07-19 Unity插件 Odin Inspector9 —— Validation Attributes

文章目录 1 说明2 验证特性2.1 AssetsOnly / SceneObjectsOnly2.2 ChildGameObjectsOnly2.3 DisallowModificationsIn2.4 FilePath2.5 FolderPath2.6 MaxValue / MinValue2.7 MinMaxSlider2.8 PropertyRange2.9 Required2.10 RequiredIn2.11 RequiredListLength2.12 ValidateIn…

JAVA:Filer过滤器+案例:请求IP访问限制和请求返回值修改

JAVA&#xff1a;Filer过滤器 介绍 Java中的Filter也被称为过滤器&#xff0c;它是Servlet技术的一部分&#xff0c;用于在web服务器上拦截请求和响应&#xff0c;以检查或转换其内容。 Filter的urlPatterns可以过滤特定地址http的请求&#xff0c;也可以利用Filter对访问请求…

鸿蒙语言基础类库:【@system.sensor (传感器)】

传感器 说明&#xff1a; 从API Version 8开始&#xff0c;该接口不再维护&#xff0c;推荐使用新接口[ohos.sensor]。本模块首批接口从API version 4开始支持。后续版本的新增接口&#xff0c;采用上角标单独标记接口的起始版本。该功能使用需要对应硬件支持&#xff0c;仅支持…

地图项目涉及知识点总结

序&#xff1a;最近做了一个在地图上标记点的项目&#xff0c;用户要求是在地图上显示百万量级的标记点&#xff0c;并且地图仍要可用&#xff08;能拖拽&#xff0c;能缩放&#xff09;。调研了不少方法和方案&#xff0c;最终实现了相对流畅的地图系统&#xff0c;加载耗时用…

2024可信数据库发展大会:TDengine CEO 陶建辉谈“做难而正确的事情”

在当前数字经济快速发展的背景下&#xff0c;可信数据库技术日益成为各行业信息化建设的关键支撑点。金融、电信、能源和政务等领域对数据处理和管理的需求不断增加&#xff0c;推动了数据库技术的创新与进步。与此同时&#xff0c;人工智能与数据库的深度融合、搜索与分析型数…