《Towards Black-Box Membership Inference Attack for Diffusion Models》论文笔记

《Towards Black-Box Membership Inference Attack for Diffusion Models》

Abstract

  1. 识别艺术品是否用于训练扩散模型的挑战,重点是人工智能生成的艺术品中的成员推断攻击——copyright protection
  2. 不需要访问内部模型组件的新型黑盒攻击方法
  3. 展示了在评估 DALL-E 生成的数据集方面的卓越性能。

作者主张

previous methods are not yet ready for copyright protection in diffusion models.

Contributions(文章里有三点,我觉得只有两点)

  1. ReDiffuse:using the model’s variation API to alter an image and compare it with the original one.
  2. A new MIA evaluation dataset:use the image titles from LAION-5B as prompts for DALL-E’s API [31] to generate images of the same contents but different styles.

Algorithm Design

target model:DDIM

为什么要强行引入一个版权保护的概念???

定义black-box variation API

x ^ = V θ ( x , t ) \hat{x}=V_{\theta}(x,t) x^=Vθ(x,t)

细节如下:

image-20240714153919091

image-20240714154002587

总结为: x x x加噪变为 x t x_t xt,再通过DDIM连续降噪变为 x ^ \hat{x} x^

intuition

Our key intuition comes from the reverse SDE dynamics in continuous diffusion models.

one simplified form of the reverse SDE (i.e., the denoise step)
X t = ( X t / 2 − ∇ x log ⁡ p ( X t ) ) + d W t , t ∈ [ 0 , T ] (3) X_t=(X_t/2-\nabla_x\log p(X_t))+dW_t,t\in[0,T]\tag{3} Xt=(Xt/2xlogp(Xt))+dWt,t[0,T](3)

The key guarantee is that when the score function is learned for a data point x, then the reconstructed image x ^ i \hat{x}_i x^i is an unbiased estimator of x x x.(算是过拟合的另一种说法吧)

Hence,averaging over multiple independent samples x ^ i \hat{x}_i x^i would greatly reduce the estimation error (see Theorem 1).

On the other hand, for a non-member image x ′ x' x, the unbiasedness of the denoised image is not guaranteed.

image-20240715221809436

details of algorithm:

  1. independently apply the black-box variation API n times with our target image x as input
  2. average the output images
  3. compare the average result x ^ \hat{x} x^ with the original image.

evaluate the difference between the images using an indicator function:
f ( x ) = 1 [ D ( x , x ^ ) < τ ] f(x)=1[D(x,\hat{x})<\tau] f(x)=1[D(x,x^)<τ]
A sample is classified to be in the training set if D ( x , x ^ ) D(x,\hat{x}) D(x,x^) is smaller than a threshold τ \tau τ ( D ( x , x ^ ) D(x,\hat{x}) D(x,x^) represents the difference between the two images)

ReDiffuse

image-20240715201536961

image-20240715212401773
Theoretical Analysis

什么是sampling interval???

MIA on Latent Diffusion Models

泛化到latent diffusion model,即Stable Diffusion

ReDiffuse+

variation API for stable diffusion is different from DDIM, as it includes the encoder-decoder process.
z = E n c o d e r ( x ) , z t = α ‾ t z + 1 − α ‾ t ϵ , z ^ = Φ θ ( z t , 0 ) , x ^ = D e c o d e r ( z ^ ) (4) z={\rm Encoder}(x),\quad z_t=\sqrt{\overline{\alpha}_t}z+\sqrt{1-\overline{\alpha}_t}\epsilon,\quad \hat{z}=\Phi_{\theta}(z_t,0),\quad \hat{x}={\rm Decoder}(\hat{z})\tag{4} z=Encoder(x),zt=αt z+1αt ϵ,z^=Φθ(zt,0),x^=Decoder(z^)(4)
modification of the algorithm

independently adding random noise to the original image twice and then comparing the differences between the two restored images x ^ 1 \hat{x}_1 x^1 and x ^ 2 \hat{x}_2 x^2:
f ( x ) = 1 [ D ( x ^ 1 , x ^ 2 ) < τ ] f(x)=1[D(\hat{x}_1,\hat{x}_2)<\tau] f(x)=1[D(x^1,x^2)<τ]

Experiments

Evaluation Metrics
  1. AUC
  2. ASR
  3. TPR@1%FPR
same experiment’s setup in previous papers [5, 18].
target modelDDIMStable Diffusion
version《Are diffusion models vulnerable to membership inference attacks?》original:stable diffusion-v1-5 provided by Huggingface
datasetCIFAR10/100,STL10-Unlabeled,Tiny-Imagenetmember set:LAION-5B,corresponding 500 images from LAION-5;non-member set:COCO2017-val,500 images from DALL-E3
T10001000
k10010
baseline methods[5]Are diffusion models vulnerable to membership inference attacks?: SecMIA[18]An efficient membership inference attack for the diffusion model by proximal initialization.[28]Membership inference attacks against diffusion models
publicationInternational Conference on Machine LearningarXiv preprint2023 IEEE Security and Privacy Workshops (SPW)
Ablation Studies
  1. The impact of average numbers
  2. The impact of diffusion steps
  3. The impact of sampling intervals

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3248825.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

昇思25天训练营Day18 - 基于MobileNetv2的垃圾分类

基于MobileNetv2的垃圾分类 本文档主要介绍垃圾分类代码开发的方法。通过读取本地图像数据作为输入&#xff0c;对图像中的垃圾物体进行检测&#xff0c;并且将检测结果图片保存到文件中。 1、实验目的 了解熟悉垃圾分类应用代码的编写&#xff08;Python语言&#xff09;&a…

[MySQL][复核查询][多表查询][自连接][自查询]详细讲解

目录 1.铺垫&基本查询回顾1.多表查询1.何为笛卡尔积&#xff1f;2.示例 2.自连接1.何为自连接&#xff1f;2.示例 3.子查询1.何为子查询&#xff1f;2.单行子查询3.多行子查询4.多列子查询5.在from子句中使用子查询6.合并查询 1.铺垫&基本查询回顾 前面讲解的MYSQL表的…

【深度学习入门篇 ⑨】循环神经网络实战

【&#x1f34a;易编橙&#xff1a;一个帮助编程小伙伴少走弯路的终身成长社群&#x1f34a;】 大家好&#xff0c;我是小森( &#xfe61;ˆoˆ&#xfe61; ) &#xff01; 易编橙终身成长社群创始团队嘉宾&#xff0c;橙似锦计划领衔成员、阿里云专家博主、腾讯云内容共创官…

运算符的使用

一、运算符介绍 运算符是一种特殊的符号&#xff0c;用以表示数据的运算、赋值和比较等 算术运算符赋值运算符比较运算符逻辑运算符位运算符 二、算术运算符 1、算术运算符是对数值类型的变量进行运算的&#xff0c;在程序中使用的非常多 2、算术运算符的使用 # 算术运算符…

Learning vtkjs之vtkSource

vtkSource的主要类型 Cone 锥体Circle 圆形Arrow 箭头ConcentricCylinder 同心圆Cube 方形Cursor3D 包围盒Cylinder 圆柱体Line 线Plane 平面Point 点Sphere 球不能调整center的source 目前整理的有下面几种source&#xff0c;对应有点类似threejs的mesh&#xff0c;通过一定的…

【.NET全栈】ASP.NET开发Web应用——站点导航技术

文章目录 前言一、站点地图1、定义站点地图文件2、使用SiteMapPath控件3、SiteMap类4、URL地址映射 二、TreeView控件1、使用TreeView控件2、以编程的方式添加节点3、使用TreeView控件导航4、绑定到XML文件5、按需加载节点6、带复选框的TreeView控件 三、Menu控件1、使用Menu控…

C语言指针超详解——进阶篇

C语言指针系列文章目录 入门篇 强化篇 进阶篇 文章目录 C语言指针系列文章目录1. 字符指针变量2. 数组指针变量2. 1 概念2. 2 数组指针变量的初始化 3. 二维数组传参的本质4. 函数指针变量4. 1 函数指针变量的创建4. 2 指针变量的使用4. 3 两个有趣的代码4. 3. 1 代码一4. 3. …

c++初阶知识——内存管理与c语言内存管理对比

目录 前言&#xff1a; 1.c&#xff0b;&#xff0b;内存管理方式 1.1 new和delete操作自定义类型 2.operator new与operator delete函数 2.1 operator new与operator delete函数 3.new和delete的实现原理 3.1 内置类型 3.2 自定义类型 new的原理 delete的原理 new…

完整教程 linux下安装百度网盘以及相关依赖库,安装完成之后启动没反应 或者 报错

完整教程 linux下安装百度网盘以及相关依赖库&#xff0c;安装完成之后启动没反应 或者 报错。 配置国内镜像源&#xff1a; yum -y install wget mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.bak wget -O /etc/yum.repos.d/CentOS-Base.repo ht…

数据库端口LookUp功能:从数据库中获取并添加数据到XML

本文将为大家介绍如何使用知行之桥EDI系统数据库端口的Lookup功能&#xff0c;从数据库中获取数据&#xff0c;并添加进输入的XML中。 使用场景&#xff1a;期待以输入xml中的值为判断条件从数据库中获取数据&#xff0c;并添加进输入xml中。 例如&#xff1a;接收到包含采购…

pyqt/pyside QTableWidget失去焦点后,选中的行仍高亮的显示

正常情况下pyqt/pyside的QTableWidget&#xff0c;点击input或者按钮失去焦点后 行的颜色消失了 如何在失去焦点时保持行的选中颜色&#xff0c;增加下面的代码&#xff1a; # 获取当前表格部件的调色板 p tableWidget.palette()# 获取活跃状态下的高亮颜色和高亮文本颜色&a…

AWS-S3实现Minio分片上传、断点续传、秒传、分片下载、暂停下载

文章目录 前言一、功能展示上传功能点下载功能点效果展示 二、思路流程上传流程下载流程 三、代码示例四、疑问 前言 Amazon Simple Storage Service&#xff08;S3&#xff09;&#xff0c;简单存储服务&#xff0c;是一个公开的云存储服务。Web应用程序开发人员可以使用它存…

HZNUCTF2023中web相关题目

[HZNUCTF 2023 preliminary]guessguessguess 这道题目打不开了 [HZNUCTF 2023 preliminary]flask 这道题目考察SSTI倒序的模板注入&#xff0c;以及用env命令获得flag 看题目&#xff0c;猜测是SSTI模板注入&#xff0c;先输入{7*7},发现模板是倒序输入的 输入}}7*7{{返回77…

Postgresql主键自增的方法

Postgresql主键自增的方法 一.方法&#xff08;一&#xff09; 使用 serial PRIMARY KEY 插入数据 二.方法&#xff08;二&#xff09; &#x1f388;边走、边悟&#x1f388;迟早会好 一.方法&#xff08;一&#xff09; 使用 serial PRIMARY KEY 建表语句如下&#xf…

学生管理系统(C语言)(Easy-x)

课 程 报 告 课 程 名 称&#xff1a; 程序设计实践 专 业 班 级 &#xff1a; XXXXX XXXXX 学 生 姓 名 &#xff1a; XXX 学 号 &#xff1a; 231040700302 任 课 教 师 &a…

C++类与对象(补)

感谢大佬的光临各位&#xff0c;希望和大家一起进步&#xff0c;望得到你的三连&#xff0c;互三支持&#xff0c;一起进步 个人主页&#xff1a;LaNzikinh-CSDN博客 文章目录 前言一.默认成员函数二.static三.友元四.匿名对象总结 前言 类的默认成员函数&#xff0c;默认成员…

Mongodb数据库(上)

介绍 是一个基于磁盘存储的开源的、文档类型(数据存储格式)的非关系型数据库。 其数据首先是存放到内存中,当内存不够时,它还可以存放到磁盘里面去 优点 基本概念 数据库 mongodb中的数据库默认是’test‘(就是一进去就是直接使用用的test数据库),如果想要使用其他…

【LabVIEW作业篇 - 2】:分数判断、按钮控制while循环暂停、单击按钮获取book文本

文章目录 分数判断按钮控制while循环暂停按钮控制单个while循环暂停 按钮控制多个while循环暂停单击按钮获取book文本 分数判断 限定整型数值输入控件值得输入范围&#xff0c;范围在0-100之间&#xff0c;判断整型数值输入控件的输入值。 输入范围在0-59之间&#xff0c;显示…

【Python进阶】正则表达式、pymysql模块

目录 一、正则表达式的概述 1、基本介绍 2、快速使用re模块 二、正则的常见规则 1、匹配单个字符 2、原始字符串 3、匹配多个字符 4、匹配开头和结尾 5、匹配分组 三、Python与MySQL交互 1、pymysql模块的安装 2、pymysql的操作步骤 3、connection对象 4、cursor…

基于ANSIBLE中的YAML非标记语言Role角色扮演

YAML-YAML Ain’t Markup Language-非标记语言 语法 列表 fruits:​ - Apple​ - Orange​ - Strawberry​ - Mango 字典 martin:​ name : Martin D’vloper​ job : Developer​ skill : Elite 示例1 需求 通过YAML编写一个简单的剧本&#xff0c;完成web的部署&#xff0c…