【机器学习】机器学习与图像分类的融合应用与性能优化新探索

文章目录

    • 引言
    • 第一章:机器学习在图像分类中的应用
      • 1.1 数据预处理
        • 1.1.1 数据清洗
        • 1.1.2 数据归一化
        • 1.1.3 数据增强
      • 1.2 模型选择
        • 1.2.1 卷积神经网络
        • 1.2.2 迁移学习
        • 1.2.3 混合模型
      • 1.3 模型训练
        • 1.3.1 梯度下降
        • 1.3.2 随机梯度下降
        • 1.3.3 Adam优化器
      • 1.4 模型评估与性能优化
        • 1.4.1 模型评估指标
        • 1.4.2 超参数调优
        • 1.4.3 增加数据量
        • 1.4.4 模型集成
    • 第二章:图像分类的具体案例分析
      • 2.1 手写数字识别
        • 2.1.1 数据预处理
        • 2.1.2 模型选择与训练
        • 2.1.3 模型评估与优化
      • 2.2 图像分类
        • 2.2.1 数据预处理
        • 2.2.2 模型选择与训练
        • 2.2.3 模型评估与优化
    • 第三章:性能优化与前沿研究
      • 3.1 性能优化
        • 3.1.1 特征工程
        • 3.1
        • 3.1.3 模型集成
      • 3.2 前沿研究
        • 3.2.1 深度学习在图像分类中的应用
        • 3.2.2 强化学习在图像分类中的应用
        • 3.2.3 联邦学习与隐私保护
    • 结语

引言

图像分类是计算机视觉领域的一项基本任务,通过分析和理解图像中的内容,自动将图像归类到预定义的类别中。随着深度学习技术的发展,机器学习在图像分类中的应用取得了显著的进展,推动了自动驾驶、医疗影像分析、智能监控等领域的发展。本文将详细介绍机器学习在图像分类中的应用,包括数据预处理、模型选择、模型训练和性能优化。通过具体的案例分析,展示机器学习技术在图像分类中的实际应用,并提供相应的代码示例。
在这里插入图片描述

第一章:机器学习在图像分类中的应用

1.1 数据预处理

在图像分类应用中,数据预处理是机器学习模型成功的关键步骤。图像数据通常具有高维度和复杂性,需要进行清洗、归一化和数据增强等处理。

1.1.1 数据清洗

数据清洗包括去除噪声、裁剪图像和调整图像大小等操作。

import cv2
import numpy as np# 加载图像
image = cv2.imread('image.jpg')# 转换为灰度图像
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 去除噪声
denoised_image = cv2.GaussianBlur(gray_image, (5, 5), 0)# 裁剪图像
cropped_image = denoised_image[50:200, 50:200]# 调整图像大小
resized_image = cv2.resize(cropped_image, (128, 128))
1.1.2 数据归一化

数据归一化可以消除不同图像之间的亮度和对比度差异,使模型更容易学习。

# 归一化图像
normalized_image = resized_image / 255.0
1.1.3 数据增强

数据增强通过对训练图像进行随机变换,如旋转、平移、翻转等,增加数据的多样性,提高模型的泛化能力。

from keras.preprocessing.image import ImageDataGenerator# 创建数据增强生成器
datagen = ImageDataGenerator(rotation_range=20,width_shift_range=0.2,height_shift_range=0.2,horizontal_flip=True
)# 生成增强图像
augmented_images = datagen.flow(np.expand_dims(normalized_image, axis=0), batch_size=1)

1.2 模型选择

在图像分类中,常用的机器学习模型包括卷积神经网络(CNN)、迁移学习模型和混合模型等。不同模型适用于不同的任务和数据特征,需要根据具体应用场景进行选择。

1.2.1 卷积神经网络

卷积神经网络(CNN)是图像分类领域的基础模型,通过卷积层、池化层和全连接层的组合,提取图像的特征,实现图像分类。

from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense# 构建卷积神经网络模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 1)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
1.2.2 迁移学习

迁移学习通过使用预训练模型,如VGG、ResNet等,在已有的模型基础上进行微调,适用于数据量较小或训练时间有限的场景。

from keras.applications import VGG16
from keras.models import Model
from keras.layers import GlobalAveragePooling2D# 加载预训练模型
base_model = VGG16(weights='imagenet', include_top=False, input_shape=(128, 128, 3))# 冻结预训练模型的层
for layer in base_model.layers:layer.trainable = False# 添加自定义分类层
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(128, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x)# 构建迁移学习模型
model = Model(inputs=base_model.input, outputs=predictions)# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
1.2.3 混合模型

混合模型结合多个模型的优点,通过集成学习的方法提高模型的稳定性和预测精度。

from keras.models import Model
from keras.layers import concatenate# 构建两个子模型
model1 = Sequential()
model1.add(Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 1)))
model1.add(MaxPooling2D((2, 2)))
model1.add(Flatten())model2 = Sequential()
model2.add(Conv2D(64, (3, 3), activation='relu', input_shape=(128, 128, 1)))
model2.add(MaxPooling2D((2, 2)))
model2.add(Flatten())# 合并子模型
combined = concatenate([model1.output, model2.output])
x = Dense(128, activation='relu')(combined)
output = Dense(10, activation='softmax')(x)# 构建混合模型
model = Model(inputs=[model1.input, model2.input], outputs=output)# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

1.3 模型训练

模型训练是机器学习的核心步骤,通过优化算法最小化损失函数,调整模型参数,使模型在训练数据上表现良好。常见的优化算法包括梯度下降、随机梯度下降和Adam优化器等。

1.3.1 梯度下降

梯度下降通过计算损失函数对模型参数的导数,逐步调整参数,使损失函数最小化。

import numpy as np# 定义损失函数
def loss_function(y_true, y_pred):return np.mean((y_true - y_pred) ** 2)# 梯度下降优化
def gradient_descent(X, y, learning_rate=0.01, epochs=1000):m, n = X.shapetheta = np.zeros(n)for epoch in range(epochs):gradient = (1/m) * X.T.dot(X.dot(theta) - y)theta -= learning_rate * gradientreturn theta# 训练模型
theta = gradient_descent(X_train, y_train)
1.3.2 随机梯度下降

随机梯度下降在每次迭代中使用一个样本进行参数更新,具有较快的收敛速度和更好的泛化能力。

def stochastic_gradient_descent(X, y, learning_rate=0.01, epochs=1000):m, n = X.shapetheta = np.zeros(n)for epoch in range(epochs):for i in range(m):gradient = X[i].dot(theta) - y[i]theta -= learning_rate * gradient * X[i]return theta# 训练模型
theta = stochastic_gradient_descent(X_train, y_train)
1.3.3 Adam优化器

Adam优化器结合了动量和自适应学习率的优点,能够快速有效地优化模型参数。

from keras.optimizers import Adam# 编译模型
model.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'])# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_split=0.2)

1.4 模型评估与性能优化

模型评估是衡量模型在测试数据上的表现,通过计算模型的准确率、召回率、F1-score等指标,评估模型的性能。性能优化包括调整超参数、增加数据量和模型集成等方法。

1.4.1 模型评估指标

常见的模型评估指标包括准确率(Accuracy)、精确率(Precision)、召回率(Recall)和F1-score等。

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score# 计算评估指标
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='weighted')
recall = recall_score(y_test, y_pred, average='weighted')
f1 = f1_score(y_test, y_pred, average='weighted')print(f'Accuracy: {accuracy}')
print(f'Precision: {precision}')
print(f'Recall: {recall}')
print(f'F1-score: {f1}')
1.4.2 超参数调优

通过网格搜索(Grid Search)和随机搜索(Random Search)等方法,对模型的超参数进行调优,找到最优的参数组合。

from sklearn.model_selection import GridSearchCV# 定义超参数网格
param_grid = {'batch_size': [16, 32, 64],'epochs': [10, 20, 30]
}# 网格搜索
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5, scoring='accuracy')
grid_search.fit(X_train, y_train)# 输出最优参数
best_params = grid_search.best_params_
print(f'Best parameters: {best_params}')# 使用最优参数训练模型
model = model.set_params(**best_params)
model.fit(X_train, y_train, epochs=10, validation_data=(X_test, y_test))
1.4.3 增加数据量

通过数据增强和采样技术,增加训练数据量,提高模型的泛化能力和预测性能。

from imblearn.over_sampling import SMOTE# 数据增强
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_train, y_train)# 训练模型
model.fit(X_resampled, y_resampled, epochs=10, validation_data=(X_test, y_test))
1.4.4 模型集成

通过模型集成的方法,将多个模型的预测结果进行组合,提高模型的稳定性和预测精度。常见的模型集成方法包括Bagging、Boosting和Stacking等。

from sklearn.ensemble import VotingClassifier# 构建模型集成
ensemble_model = VotingClassifier(estimators=[('cnn', model1),('vgg', model2)
], voting='soft')# 训练集成模型
ensemble_model.fit(X_train, y_train)# 预测与评估
y_pred = ensemble_model.predict(X_test)

在这里插入图片描述

第二章:图像分类的具体案例分析

2.1 手写数字识别

手写数字识别是图像分类中的经典问题,通过分析手写数字图像,识别每个数字的类别。以下是手写数字识别的具体案例分析。

2.1.1 数据预处理

首先,对手写数字数据集进行预处理,包括数据清洗、归一化和数据增强。

from keras.datasets import mnist
from keras.utils import to_categorical# 加载手写数字数据集
(X_train, y_train), (X_test, y_test) = mnist.load_data()# 数据清洗
X_train = X_train / 255.0
X_test = X_test / 255.0# 扩展维度
X_train = np.expand_dims(X_train, axis=-1)
X_test = np.expand_dims(X_test, axis=-1)# 标签编码
y_train = to_categorical(y_train, num_classes=10)
y_test = to_categorical(y_test, num_classes=10)# 数据增强
datagen = ImageDataGenerator(rotation_range=10,width_shift_range=0.1,height_shift_range=0.1,horizontal_flip=False
)
datagen.fit(X_train)
2.1.2 模型选择与训练

选择合适的模型进行训练,这里以卷积神经网络为例。

# 构建卷积神经网络模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])# 训练模型
model.fit(datagen.flow(X_train, y_train, batch_size=32), epochs=10, validation_data=(X_test, y_test))
2.1.3 模型评估与优化

评估模型的性能,并进行超参数调优和数据增强。

# 评估模型
loss, accuracy = model.evaluate(X_test, y_test)
print(f'Accuracy: {accuracy}')# 超参数调优
param_grid = {'batch_size': [16, 32, 64],'epochs': [10, 20, 30]
}
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5, scoring='accuracy')
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
print(f'Best parameters: {best_params}')# 使用最优参数训练模型
model = model.set_params(**best_params)
model.fit(datagen.flow(X_train, y_train, batch_size=32), epochs=10, validation_data=(X_test, y_test))# 数据增强
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_train.reshape(X_train.shape[0], -1), y_train)
model.fit(X_resampled.reshape(-1, 28, 28, 1), y_resampled)# 预测与评估
y_pred = model.predict(X_test)

2.2 图像分类

图像分类是通过分析图像的内容,将图像分配到预定义的类别中。以下是图像分类的具体案例分析。

2.2.1 数据预处理
from keras.datasets import cifar10
from keras.utils import to_categorical# 加载图像分类数据集
(X_train, y_train), (X_test, y_test) = cifar10.load_data()# 数据清洗
X_train = X_train / 255.0
X_test = X_test / 255.0# 标签编码
y_train = to_categorical(y_train, num_classes=10)
y_test = to_categorical(y_test, num_classes=10)# 数据增强
datagen = ImageDataGenerator(rotation_range=20,width_shift_range=0.2,height_shift_range=0.2,horizontal_flip=True
)
datagen.fit(X_train)
2.2.2 模型选择与训练

选择合适的模型进行训练,这里以迁移学习为例。

# 加载预训练模型
base_model = VGG16(weights='imagenet', include_top=False, input_shape=(32, 32, 3))# 冻结预训练模型的层
for layer in base_model.layers:layer.trainable = False# 添加自定义分类层
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(128, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x)# 构建迁移学习模型
model = Model(inputs=base_model.input, outputs=predictions)# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])# 训练模型
model.fit(datagen.flow(X_train, y_train, batch_size=32), epochs=10, validation_data=(X_test, y_test))
2.2.3 模型评估与优化

评估模型的性能,并进行超参数调优和数据增强。

# 评估模型
loss, accuracy = model.evaluate(X_test, y_test)
print(f'Accuracy: {accuracy}')# 超参数调优
param_grid = {'batch_size': [16, 32, 64],'epochs': [10, 20, 30]
}
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5, scoring='accuracy')
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
print(f'Best parameters: {best_params}')# 使用最优参数训练模型
model = model.set_params(**best_params)
model.fit(datagen.flow(X_train, y_train, batch_size=32), epochs=10, validation_data=(X_test, y_test))# 数据增强
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_train.reshape(X_train.shape[0], -1), y_train)
model.fit(X_resampled.reshape(-1, 32, 32, 3), y_resampled)# 预测与评估
y_pred = model.predict(X_test)

在这里插入图片描述

第三章:性能优化与前沿研究

3.1 性能优化

3.1.1 特征工程

通过特征选择、特征提取和特征构造,优化模型的输入,提高模型的性能。

from sklearn.feature_selection import SelectKBest, f_classif# 特征选择
selector = SelectKBest(score_func=f_classif, k=10)
X_selected = selector.fit_transform(X, y)
3.1

.2 超参数调优
通过网格搜索和随机搜索,找到模型的最优超参数组合。

from sklearn.model_selection import RandomizedSearchCV# 随机搜索
param_dist = {'n_estimators': [50, 100, 150],'max_depth': [3, 5, 7, 10],'min_samples_split': [2, 5, 10]
}
random_search = RandomizedSearchCV(estimator=RandomForestClassifier(), param_distributions=param_dist, n_iter=10, cv=5, scoring='accuracy')
random_search.fit(X_train, y_train)
best_params = random_search.best_params_
print(f'Best parameters: {best_params}')# 使用最优参数训练模型
model = RandomForestClassifier(**best_params)
model.fit(X_train, y_train)# 预测与评估
y_pred = model.predict(X_test)
3.1.3 模型集成

通过模型集成,提高模型的稳定性和预测精度。

from sklearn.ensemble import StackingClassifier# 构建模型集成
stacking_model = StackingClassifier(estimators=[('cnn', model1),('vgg', model2)
], final_estimator=LogisticRegression())# 训练集成模型
stacking_model.fit(X_train, y_train)# 预测与评估
y_pred = stacking_model.predict(X_test)

3.2 前沿研究

3.2.1 深度学习在图像分类中的应用

深度学习在图像分类中的应用包括卷积神经网络、生成对抗网络和自监督学习等。

3.2.2 强化学习在图像分类中的应用

强化学习通过与环境的交互,不断优化识别策略,在动态目标检测和自动驾驶中具有广泛的应用前景。

3.2.3 联邦学习与隐私保护

联邦学习通过在不交换数据的情况下进行联合建模,保护用户数据隐私,提高图像分类系统的安全性和公平性。

结语

机器学习作为图像分类领域的重要技术,已经在多个应用场景中取得了显著的成果。通过对数据的深入挖掘和模型的不断优化,机器学习技术将在图像分类中发挥更大的作用,推动计算机视觉和人工智能的发展。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3248556.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

GESP CCF C++ 七级认证真题 2024年6月

第 1 题 下列C代码的输出结果是&#xff08; &#xff09;。 #include <iostream> #include <cmath> using namespace std; int main() { cout << sin(3.1415926 / 2); return 0; } A. 0 B. 1 C.0.5 D.0.7071 第 2 题 对于如下图的二叉树&#x…

【免费】中国电子学会所有历年真题卷全部免费

今天登录到csdn 遇到一件非常气愤的事情 原本就是电子学会网站的试卷 某些博主为了赚那么点钱 真的是不要Face了 之前没有放开资源 是因为懒得整理 为了这个不要face 花了我一下午时间把所有的资源整合在一起 现在全部拿走 全部免费&#xff01;全部免费&#xff01;全…

【网络】掌握网络基础概念

文章目录 OSI七层模型TCP/IP五层&#xff08;或四层&#xff09;模型为什么要有TCP/IP协议网络传输的基本流程网络传输流程图数据包封装和分用 网络中的地址管理IP地址Mac地址比较IP地址和Mac地址 OSI七层模型 OSI即Open System Interconnection,开发系统互连。OSI七层模型是一…

ABAP 物料主数据屏幕增强记录

参考文章&#xff1a;https://zhuanlan.zhihu.com/p/692818545 先从SPRO进入——》SAP 参考IMG——》后勤_常规——》物料主数据——》配置物料主记录——》创建定制子屏幕的程序 然后会让你创建一个函数组,此处命名为ZTEST2 &#xff08;后面才发现这张图截图不对&#xf…

昇思25天学习打卡营第13天|LLM-基于MindSpore实现的GPT对话情绪识别

打卡 目录 打卡 预装环境 流程简述 部分执行结果演示 词向量加载过程 模型结构 模型训练过程 模型预测过程 代码 预装环境 pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore2.2.14 pip install mindnlp pip install jieba pip install spacy pip …

Typescript 实现倒计时功能 useCountdown

效果图 代码块 useCountdown.ts import {onUnmounted, reactive, ref, watch} from "vue";type union days | hours | minutes | seconds | millisecondsexport type Remains Record<union, number>;/*** 创建一个倒计时** 用法*/ export const useCountDo…

Python酷库之旅-第三方库Pandas(029)

目录 一、用法精讲 74、pandas.api.interchange.from_dataframe函数 74-1、语法 74-2、参数 74-3、功能 74-4、返回值 74-5、说明 74-6、用法 74-6-1、数据准备 74-6-2、代码示例 74-6-3、结果输出 75、pandas.Series类 75-1、语法 75-2、参数 75-3、功能 75-4…

C语言函数:编程世界的魔法钥匙(2)

引言 注&#xff1a;由于这部分内容比较抽象&#xff0c;而小编我又是一个刚刚进入编程世界的计算机小白&#xff0c;所以我的介绍可能会有点让人啼笑皆非。希望大家多多包涵&#xff01;万分感谢&#xff01;待到小编我学有所成&#xff0c;一定会把这块知识点重新介绍一遍&a…

【JAVA基础】反射

编译期和运行期 首先大家应该先了解两个概念&#xff0c;编译期和运行期&#xff0c;编译期就是编译器帮你把源代码翻译成机器能识别的代码&#xff0c;比如编译器把java代码编译成jvm识别的字节码文件&#xff0c;而运行期指的是将可执行文件交给操作系统去执行&#xff0c; …

Linux介绍和文件管理

一Linux的起源 1.Unix Dennis Ritchie和Ken Thompson发明了C语言&#xff0c;而后写出了Unix的内核 2.Minix MINIX是一种基于微 内核架构的类UNIX计算机操作系统&#xff0c;由 Andrew S. Tanenbaum发明 3.Linux内核 芬兰赫尔辛基大学的研究生Linus Torvalds基于Gcc、 ba…

stack与queue的介绍与使用

stack 栈&#xff08;stack&#xff09;是一种遵循先入后出&#xff08;FILO&#xff09;逻辑的线性数据结构。其只能从容器的一端进行元素的插入与提取操作。 我们可以把他比作串串&#xff0c;我们在串肉的时候都是从底依次往上串肉&#xff0c;然后在吃的时候是从串顶依次…

springboot websocket 知识点汇总

以下是一个详细全面的 Spring Boot 使用 WebSocket 的知识点汇总 1. 配置 WebSocket 添加依赖 进入maven官网, 搜索spring-boot-starter-websocket&#xff0c;选择版本, 然后把依赖复制到pom.xml的dependencies标签中 配置 WebSocket 创建一个配置类 WebSocketConfig&…

platformIO STM32 upload-“Failed to init device.”问题解决

因为发现自己的32板子有带自动下载功能&#xff0c;platformIO也支持串口下载&#xff0c;但一直提示这个问题 问题情况 问题解决 把BOOT0接3.3V&#xff0c;BOOT1接GND&#xff0c;再点击下载(之后接回去复位也可以显示) 这是我从一个有相同问题的人从他尝试过的解决方案中…

手动添加node包给nvm管理

1.下载二进制包文件&#xff1a;https://nodejs.org/zh-cn/download/prebuilt-binaries 2.解压后&#xff0c;改名为v20.15.1。 3.放入nvm文件夹下&#xff1a; 4.运行命令即可查看&#xff1a;nvm ls 5.命令大全&#xff1a; 更新 nvm&#xff1a; nvm install-latest-npm…

STL—string类—模拟实现

STL—string类—模拟实现 熟悉了string的结构和各自接口的使用之后&#xff0c;现在就要尝试去模拟实现string类 这个string类为了避免和我们库里的string类冲突&#xff0c;因此我们需要定义一个自己的命名空间 namespace wzf {class string{public://成员函数private://成…

java之 junit单元测试案例【经典版】

一 junit单元测试 1.1 单元测试作用 单元测试要满足AIR原则&#xff0c;即 A&#xff1a; automatic 自动化&#xff1b; I: Independent 独立性&#xff1b; R&#xff1a;Repeatable 可重复&#xff1b; 2.单元测试必须使用assert来验证 1.2 案例1 常规单元测试 1.…

H6392升压恒压芯片输入2.6V4.2V5V升压9V12V18V2.5Aic 制冷市场应用

在制冷市场应用中&#xff0c;H6392升压恒压芯片由于其多种特性和优势&#xff0c;可以找到多种应用场景。虽然直接提及“制冷市场”的具体应用可能不太常见&#xff0c;但我们可以从产品特征和典型应用中推导出一些潜在的应用场景。 制冷系统电子控制器供电&#xff1a;H6392…

让旧书重焕新生:旧书回收小程序开发

在这个数字化的时代&#xff0c;书籍依然是知识的重要载体&#xff0c;承载着无数的智慧与情感。然而&#xff0c;随着时间的推移&#xff0c;许多旧书被闲置在角落&#xff0c;逐渐被遗忘。为了让这些旧书重新发挥价值&#xff0c;我们致力于开发一款创新的旧书回收小程序&…

Re:从零开始的C++世界——类和对象(下)

文章目录 前言1.再谈构造函数&#x1f34e;构造函数体赋值&#x1f34e;初始化列表&#x1f34e;特性&#x1f34c;特性一&#x1f34c;特性二&#x1f34c;特性三&#x1f34c;特性四&#x1f34c;特性五 &#x1f34e;explicit 关键字 2.static成员&#x1f34e;概念&#x1…

ThinkBook_TypeC外接显卡突然无输出了怎么解决?这里有方法!

ThinkBook用了快一年了&#xff0c;使用群体蛮多&#xff01;速度和效果还是值得肯定。 但是这个外接显示器用着用着&#xff0c;偶尔就碰到无输出了&#xff01;在使用TypeC外接显卡的情况下! 这个问题我咨询过联想客服&#xff0c;一顿乱指导&#xff0c;方向根本不对&…