stack与queue的介绍与使用

stack

栈(stack)是一种遵循先入后出(FILO)逻辑的线性数据结构。其只能从容器的一端进行元素的插入与提取操作。

我们可以把他比作串串,我们在串肉的时候都是从底依次往上串肉,然后在吃的时候是从串顶依次向下吃,将串上的肉比作各种类型的元素(如整数、字符、对象等),串子比作适配器容器,就得到了栈这种数据结构。

如图所示,我们把容器内元素的顶部称为“栈顶”,底部称为“栈底”。将把元素添加到栈顶的操作叫作“入栈”,删除栈顶元素的操作叫作“出栈”。(图片取自hello算法)

栈的常用操作

成员函数功能
empty()判断栈是否为空,空返回真,不为空返回假
size()获取栈中有效元素个数,返回值为size_t
top()获取栈顶元素
push()元素入栈
pop()元素出栈
swap()交换两个栈中的数据(可以部分也可以交换全部)

其实在c语言中就已经存在了stack,但是c++后又引入了模板,所以c++STL标准库里面就存在了stack的模板,但是要需要引用头文件#include<stack> 

#include<iostream>
#include<stack>
using namespace std;int main()
{stack<int> st;// 元素入栈st.push(1);st.push(3);st.push(2);st.push(5);st.push(4);//访问栈顶元素 int top = st.top();// 元素出栈 st.pop(); // 无返回值// 获取栈的长度 int size = st.size();// 判断是否为空 bool empty = st.empty();return 0;
}

可视化监视: 

 栈的实现:

 以下是基于deque实现栈的示例代码:

deque就是双向队列;

如果不是很了解可以看这篇文章:C++中deque的用法(超详细,入门必看)_c++ deque-CSDN博客

需要补充的一点就是deque底层是不连续的数组构成,他是又多个连续的小子数组组成。

    template<class T, class Con = deque<T>>class stack{public:stack(){}void push(const T& x){_c.push_back(x);}void pop(){_c.pop_back();}T& top(){return _c.back();}const T& top()const{return _c.back();}size_t size()const{return _c.size();}bool empty()const{return _c.empty();}private:Con _c;};

那么如果用链表怎么来实现呢?

下面是基于链表实现stack:

    template<class T>struct stack_node{stack_node(const T& _val):next(nullptr), val(_val){}stack_node* next;T val;};template<class T>class stack{public:stack(){stackTop = nullptr;stkSize = 0;}~stack(){delete[]stackTop;stackTop = nullptr;stkSize = 0;}int size(){return stkSize;}bool empty(){return size() == 0;}void push(int num){stack_node<T>* node = new stack_node<T>(num);node->next = stackTop;stackTop = node;stkSize++;}int pop(){assert(!empty());int num = top();stack_node<T>* tmp = stackTop;stackTop = stackTop->next;// 释放内存delete tmp;stkSize--;return num;}int top(){assert(!empty());return stackTop->val;}private:stack_node<T>* stackTop; // 将头节点作为栈顶int stkSize;        // 栈的长度};

同样还存在着用数组来实现栈

class stack{public:int size() {return stack.size();}bool empty() {return stack.size() == 0;}void push(int num) {stack.push_back(num);}int pop() {int num = top();stack.pop_back();return num;}int top() {assert(!empty());return stack.back();}private:vector<int> stack;}
};

三种实现方法的对比:

三种实现对此来说第一种实现是标准库的标准实现方法,二三都是我们自己可以通过自己思考可以想出来的实现方法,两种实现都支持栈定义中的各项操作。数组实现额外支持随机访问,但这已超出了栈的定义范畴,因此一般不会用到。

首先第三种方法的缺点之一就是如果入栈时超出数组容量,会触发扩容机制,导致该次入栈操作的时间复杂度变为0(n);

缺点二就是方法三在扩容上会存在大量的浪费空间,比如已经存在100个元素了,恰好数组正好填满,但是如果还要添加数据,链表只需要对应数据个数添加结点,但是数组要进行倍数扩容,会又大量浪费;

栈的典型应用

(取自hello算法)

  • 浏览器中的后退与前进、软件中的撤销与反撤销。每当我们打开新的网页,浏览器就会对上一个网页执行入栈,这样我们就可以通过后退操作回到上一个网页。后退操作实际上是在执行出栈。如果要同时支持后退和前进,那么需要两个栈来配合实现。
  • 程序内存管理。每次调用函数时,系统都会在栈顶添加一个栈帧,用于记录函数的上下文信息。在递归函数中,向下递推阶段会不断执行入栈操作,而向上回溯阶段则会不断执行出栈操作。

    queue

 队列(queue)是一种遵循先入先出规则的线性数据结构。顾名思义,队列模拟了排队现象,即新来的人不断加入队列尾部,而位于队列头部的人逐个离开。

他就像我们打饭的时候,先去的人先打完饭,所以队列相对应就是(FIFO),

如图所示,我们将队列头部称为“队首”,尾部称为“队尾”,将把元素加入队尾的操作称为“入队”,删除队首元素的操作称为“出队”。(图片取自hello算法)

 队列常用操作

成员函数功能
empty()判断队列是否为空
size()获取队列中有效元素个数
front()获取队头元素
back()获取队尾元素
push()队尾入队列
pop()队头出队列
swap()交换两个队列中的数据,可以交换部分也可以交换全部
int main()
{/* 初始化队列 */queue<int> queue;/* 元素入队 */queue.push(1);queue.push(3);queue.push(2);queue.push(5);queue.push(4);/* 访问队首元素 */cout << queue.front() << endl;/* 元素出队 */queue.pop();/* 获取队列的长度 */cout << queue.size() << endl;/* 判断队列是否为空 */cout << queue.empty() << endl;return 0;
}

运行效果: 

 队列的实现:

利用deque实现:

    template<class T, class Con = deque<T>>class queue{public:queue(){}void push(const T& x){_c.push_back(x);}void pop(){_c.pop_front();}T& back(){return _c.back();}const T& back()const{return _c.back();}T& front(){return _c.front();}const T& front()const{return _c.front();}size_t size()const{return _c.size();}bool empty()const{return _c.empty();}private:Con _c;};

本人有点懒,以后有空会补充用链表来实现队列:

省略......

利用数组来实现:(全部摘自hello算法)

注意:里面有一点小优化,要注意哦

在数组中删除首元素的时间复杂度为 0(n) ,这会导致出队操作效率较低。然而,我们可以采用以下巧妙方法来避免这个问题。

我们可以使用一个变量 front 指向队首元素的索引,并维护一个变量 size 用于记录队列长度。定义 rear = front + size ,这个公式计算出的 rear 指向队尾元素之后的下一个位置。

基于此设计,数组中包含元素的有效区间为 [front, rear - 1],各种操作的实现方法如图所示。

  • 入队操作:将输入元素赋值给 rear 索引处,并将 size 增加 1 。
  • 出队操作:只需将 front 增加 1 ,并将 size 减少 1 。

可以看到,入队和出队操作都只需进行一次操作,时间复杂度均为 0(1) 。

你可能会发现一个问题:在不断进行入队和出队的过程中,front 和 rear 都在向右移动,当它们到达数组尾部时就无法继续移动了。为了解决此问题,我们可以将数组视为首尾相接的“环形数组”。

对于环形数组,我们需要让 front 或 rear 在越过数组尾部时,直接回到数组头部继续遍历。这种周期性规律可以通过“取余操作”来实现,代码如下所示:

/* 基于环形数组实现的队列 */
class ArrayQueue {private:int *nums;       // 用于存储队列元素的数组int front;       // 队首指针,指向队首元素int queSize;     // 队列长度int queCapacity; // 队列容量public:ArrayQueue(int capacity) {// 初始化数组nums = new int[capacity];queCapacity = capacity;front = queSize = 0;}~ArrayQueue() {delete[] nums;}/* 获取队列的容量 */int capacity() {return queCapacity;}/* 获取队列的长度 */int size() {return queSize;}/* 判断队列是否为空 */bool isEmpty() {return size() == 0;}/* 入队 */void push(int num) {if (queSize == queCapacity) {cout << "队列已满" << endl;return;}// 计算队尾指针,指向队尾索引 + 1// 通过取余操作实现 rear 越过数组尾部后回到头部int rear = (front + queSize) % queCapacity;// 将 num 添加至队尾nums[rear] = num;queSize++;}/* 出队 */int pop() {int num = peek();// 队首指针向后移动一位,若越过尾部,则返回到数组头部front = (front + 1) % queCapacity;queSize--;return num;}/* 访问队首元素 */int peek() {if (isEmpty())throw out_of_range("队列为空");return nums[front];}/* 将数组转化为 Vector 并返回 */vector<int> toVector() {// 仅转换有效长度范围内的列表元素vector<int> arr(queSize);for (int i = 0, j = front; i < queSize; i++, j++) {arr[i] = nums[j % queCapacity];}return arr;}
};

队列典型应用

  • 淘宝订单。购物者下单后,订单将加入队列中,系统随后会根据顺序处理队列中的订单。在双十一期间,短时间内会产生海量订单,高并发成为工程师们需要重点攻克的问题。
  • 各类待办事项。任何需要实现“先来后到”功能的场景,例如打印机的任务队列、餐厅的出餐队列等,队列在这些场景中可以有效地维护处理顺序。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3248529.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

springboot websocket 知识点汇总

以下是一个详细全面的 Spring Boot 使用 WebSocket 的知识点汇总 1. 配置 WebSocket 添加依赖 进入maven官网, 搜索spring-boot-starter-websocket&#xff0c;选择版本, 然后把依赖复制到pom.xml的dependencies标签中 配置 WebSocket 创建一个配置类 WebSocketConfig&…

platformIO STM32 upload-“Failed to init device.”问题解决

因为发现自己的32板子有带自动下载功能&#xff0c;platformIO也支持串口下载&#xff0c;但一直提示这个问题 问题情况 问题解决 把BOOT0接3.3V&#xff0c;BOOT1接GND&#xff0c;再点击下载(之后接回去复位也可以显示) 这是我从一个有相同问题的人从他尝试过的解决方案中…

手动添加node包给nvm管理

1.下载二进制包文件&#xff1a;https://nodejs.org/zh-cn/download/prebuilt-binaries 2.解压后&#xff0c;改名为v20.15.1。 3.放入nvm文件夹下&#xff1a; 4.运行命令即可查看&#xff1a;nvm ls 5.命令大全&#xff1a; 更新 nvm&#xff1a; nvm install-latest-npm…

STL—string类—模拟实现

STL—string类—模拟实现 熟悉了string的结构和各自接口的使用之后&#xff0c;现在就要尝试去模拟实现string类 这个string类为了避免和我们库里的string类冲突&#xff0c;因此我们需要定义一个自己的命名空间 namespace wzf {class string{public://成员函数private://成…

java之 junit单元测试案例【经典版】

一 junit单元测试 1.1 单元测试作用 单元测试要满足AIR原则&#xff0c;即 A&#xff1a; automatic 自动化&#xff1b; I: Independent 独立性&#xff1b; R&#xff1a;Repeatable 可重复&#xff1b; 2.单元测试必须使用assert来验证 1.2 案例1 常规单元测试 1.…

H6392升压恒压芯片输入2.6V4.2V5V升压9V12V18V2.5Aic 制冷市场应用

在制冷市场应用中&#xff0c;H6392升压恒压芯片由于其多种特性和优势&#xff0c;可以找到多种应用场景。虽然直接提及“制冷市场”的具体应用可能不太常见&#xff0c;但我们可以从产品特征和典型应用中推导出一些潜在的应用场景。 制冷系统电子控制器供电&#xff1a;H6392…

让旧书重焕新生:旧书回收小程序开发

在这个数字化的时代&#xff0c;书籍依然是知识的重要载体&#xff0c;承载着无数的智慧与情感。然而&#xff0c;随着时间的推移&#xff0c;许多旧书被闲置在角落&#xff0c;逐渐被遗忘。为了让这些旧书重新发挥价值&#xff0c;我们致力于开发一款创新的旧书回收小程序&…

Re:从零开始的C++世界——类和对象(下)

文章目录 前言1.再谈构造函数&#x1f34e;构造函数体赋值&#x1f34e;初始化列表&#x1f34e;特性&#x1f34c;特性一&#x1f34c;特性二&#x1f34c;特性三&#x1f34c;特性四&#x1f34c;特性五 &#x1f34e;explicit 关键字 2.static成员&#x1f34e;概念&#x1…

ThinkBook_TypeC外接显卡突然无输出了怎么解决?这里有方法!

ThinkBook用了快一年了&#xff0c;使用群体蛮多&#xff01;速度和效果还是值得肯定。 但是这个外接显示器用着用着&#xff0c;偶尔就碰到无输出了&#xff01;在使用TypeC外接显卡的情况下! 这个问题我咨询过联想客服&#xff0c;一顿乱指导&#xff0c;方向根本不对&…

连接池应用

一、什么是连接池&#xff1a; 当应用程序需要执行数据库操作时&#xff0c;它会从连接池中请求一个可用的连接。如果连接池中有空闲的连接&#xff0c;那么其中一个连接会被分配给请求者。一旦数据库操作完成&#xff0c;连接不会被关闭&#xff0c;而是被归还到连接池中&…

【数据结构】非线性表----树详解

树是一种非线性结构&#xff0c;它是由**n&#xff08;n>0&#xff09;**个有限结点组成一个具有层次关系的集合。具有层次关系则说明它的结构不再是线性表那样一对一&#xff0c;而是一对多的关系&#xff1b;随着层数的增加&#xff0c;每一层的元素个数也在不断变化&…

Uniapp 组件 props 属性为 undefined

问题 props 里的属性值都是 undefined 代码 可能的原因 组件的名字要这样写&#xff0c;这个官方文档有说明

docker emqx 配置密码和禁用匿名连接

mqtt版本emqx/emqx:4.4.3 1.首先把镜像内目录/opt/emqx/etc拷贝到本地 2.做映射 3.allow_anonymous&#xff0c; false改成true 4. 5.MQTTX连不上的话看看下图的有没有打开

最优控制问题中的折扣因子

本文探讨了在线性二次型调节器&#xff08;LQR&#xff09;中引入折扣因子的重要性和方法。通过引入折扣因子&#xff0c;性能指标在无穷时间上的积分得以收敛&#xff0c;同时反映了现实问题中未来成本重要性递减的现象&#xff08;强化学习重要概念&#xff09;。详细推导了带…

《0基础》学习Python——第十六讲 __文件读写

<文件读写> 一、什么是文件读写 文件读写是指在Python程序中对文件进行读取和写入操作。通过文件读写&#xff0c;可以读取文件中的数据&#xff0c;或者向文件中写入数据。 Python提供了多种文件读写的方式&#xff0c;其中最常用的方式是使用open()函数打开一个文件&a…

uniapp打包h5,白屏并报错Failed to load resource: net::ERR_FILE_NOT_FOUND

在manifest.json内找到web配置修改运行的基础路径

9 Docker实践_安装JDK

欢迎来到一夜看尽长安花 博客&#xff0c;您的点赞和收藏是我持续发文的动力 对于文章中出现的任何错误请大家批评指出&#xff0c;一定及时修改。有任何想要讨论的问题可联系我&#xff1a;3329759426qq.com 。发布文章的风格因专栏而异&#xff0c;均自成体系&#xff0c;不足…

5G以太网和5G前传业务的有效解决方案——25G可调DWDM光模块

信息技术的迅猛发展和数据传输需求的不断增加&#xff0c;光通信技术在现代网络中扮演着至关重要的角色。DWDM技术通过在一根光纤上使用多个不同波长的光信号同时传输&#xff0c;大幅提高了数据传输的容量。而可调光模块则能够在多种波长之间进行切换&#xff0c;实现灵活、高…

昇思25天学习打卡营第14天|munger85

基于MindNLPMusicGen生成自己的个性化音乐 这个所谓的个性化的音乐就是指你输入一段文字它会根据这个文字输出一段音乐这个音乐是贴近于那段文字的所以叫做文生成音乐&#xff0c; 如果网络正常的话就可以直接从下载这个模型。 那么音乐生成的有两种方式呢有两种方式&#xff…

计算机网络基础:局域网、广域网及OSI七层模型解析

文章目录 一、局域网和广域网1、局域网&#xff08;LAN - Local Area Network&#xff09;2、广域网&#xff08;WAN - Wide Area Network&#xff09;3、对比局域网和广域网 二、OSI七层模型1、OSI的七层网络结构2、OSI的数据传输方式3、网络与操作系统的关系 一、局域网和广域…