【DGL系列】DGLGraph.out_edges简介

转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn]

如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~


目录

函数说明

用法示例

示例 1: 获取所有边的源节点和目标节点

示例 2: 获取特定节点的出边

示例 3: 获取所有边的边ID

示例 4: 获取所有信息(源节点、目标节点和边ID)

示例 5: 对于有多种边缘类型的图形,需要在查询中指定边的类型

示例 6:对于无向图,则边是双向的


dgl.DGLGraph.out_edges — DGL 2.3 documentation

函数说明

  dgl.DGLGraph.out_edges 是 DGL(Deep Graph Library)中的一个方法,用于获取图中所有边的源节点和目标节点。这个方法可以用于返回整个图的边,也可以通过传入指定的节点来获取从这些节点出发的边。

DGLGraph.out_edges(u=ALL, etype=None, form='uv')

参数

  • u(节点ID):

    • 可以是 单个节点ID(整数)。
    • 可以是 节点ID的张量(Int Tensor),每个元素是一个节点ID。张量的设备类型和ID数据类型必须与图的相同。
    • 可以是 可迭代的节点ID列表(iterable[int]),每个元素是一个节点ID。
  • form(字符串,可选):

    • 'eid': 返回1D张量,表示所有边的ID。
    • 'uv'(默认): 返回一个2元组(1D张量),分别表示所有边的源节点和目标节点。
    • 'all': 返回一个3元组(1D张量),分别表示所有边的源节点、目标节点和边ID。
  • etype(字符串或(字符串, 字符串, 字符串),可选):

    • 边的类型名称。格式可以是 (源节点类型, 边类型, 目标节点类型)。
    • 或者是一个唯一标识三元组格式的字符串类型名称。如果图中只有一种类型的边,可以省略。

返回值

  • 返回所有指定类型节点的出边。返回形式取决于 form 参数的值。
    • 'eid': 返回一个1D张量,表示所有边的ID。
    • 'uv': 返回一个2元组(1D张量),分别表示所有边的源节点和目标节点。
    • 'all': 返回一个3元组(1D张量),分别表示所有边的源节点、目标节点和边ID。

用法示例

我们创建一个如图所示的简单的graph:

示例 1: 获取所有边的源节点和目标节点

import dgl
import torch# 创建一个简单的图,包含4个节点和4条边
u = torch.tensor([0, 0, 1, 2])
v = torch.tensor([1, 2, 3, 3])
graph = dgl.graph((u, v))# 获取所有边的源节点和目标节点
src, dst = graph.out_edges(graph.nodes())print("源节点:", src)
print("目标节点:", dst)# 源节点: tensor([0, 0, 1, 2])
# 目标节点: tensor([1, 2, 3, 3])

示例 2: 获取特定节点的出边

# 获取节点0和节点1的出边
nodes = torch.tensor([0, 1])
src, dst = graph.out_edges(nodes)print("源节点:", src)
print("目标节点:", dst)# 源节点: tensor([0, 0, 1])
# 目标节点: tensor([1, 2, 3])

示例 3: 获取所有边的边ID

# 获取所有边的边ID
edge_ids = graph.out_edges(graph.nodes(), form='eid')print("边ID:", edge_ids)# 边ID: tensor([0, 1, 2, 3])

示例 4: 获取所有信息(源节点、目标节点和边ID)

# 获取所有边的源节点、目标节点和边ID
src, dst, eid = graph.out_edges(graph.nodes(), form='all')print("源节点:", src)
print("目标节点:", dst)
print("边ID:", eid)# 源节点: tensor([0, 0, 1, 2])
# 目标节点: tensor([1, 2, 3, 3])
# 边ID: tensor([0, 1, 2, 3])

示例 5: 对于有多种边缘类型的图形,需要在查询中指定边的类型

hg = dgl.heterograph({('user', 'follows', 'user'): (torch.tensor([0, 1]), torch.tensor([1, 2])),('user', 'plays', 'game'): (torch.tensor([3, 4]), torch.tensor([5, 6]))
})
hg.out_edges(torch.tensor([1, 2]), etype='follows')# (tensor([1]), tensor([2]))

示例 6:对于无向图,则边是双向的

注意:在dgl的图中,所有边都是有向的,如果要创建无向图,需要创建双向边。

import dgl
import torch# 创建一个无向图,包含4个节点和4条边
u = torch.tensor([0, 0, 1, 2])
v = torch.tensor([1, 2, 3, 3])# 创建双向边以模拟无向图
u_bi = torch.cat([u, v])
v_bi = torch.cat([v, u])graph = dgl.graph((u_bi, v_bi))
# 简化图
graph = dgl.to_simple(graph)# 获取节点的出边
src, dst = graph.out_edges([1, 3])print("源节点:", src)
print("目标节点:", dst)# 源节点: tensor([1, 1, 3, 3])
# 目标节点: tensor([3, 0, 1, 2])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3247472.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

PyTorch张量索引

文章目录 1、简介1.1、基本概念1.2、索引类型1.3、数据准备1.4、技术摘要⭐ 2、简单行、列索引3、列表索引4、范围索引5、布尔索引6、多维索引 🍃作者介绍:双非本科大三网络工程专业在读,阿里云专家博主,专注于Java领域学习&#…

未来的社交标杆:如何通过AI让Facebook更加智能化?

在当今信息爆炸的时代,社交媒体平台的智能化已成为提高用户体验和互动质量的关键因素。Facebook,作为全球最大的社交平台之一,通过人工智能(AI)的广泛应用,正不断推进其智能化进程。本文将探讨Facebook如何…

Postman安装使用教程(详解)

目录 一、Postman是什么 二、安装系统要求 三、下载Postman 四、注册和登录Postman 五、创建工作空间 六、创建请求 一、Postman是什么 在安装之前,让我们先来简单了解一下Postman。Postman是一个流行的API开发工具,它提供了友好的用户界面用于发送…

web安全之跨站脚本攻击xss

定义: 后果 比如黑客可以通过恶意代码,拿到用户的cookie就可以去登陆了 分类 存储型 攻击者把恶意脚本存储在目标网站的数据库中(没有过滤直接保存),当用户访问这个页面时,恶意脚本会从数据库中被读取并在用户浏览器中执行。比如在那些允许用户评论的…

llama-index,uncharted and llama2:7b run locally to generate Index

题意:本地运行 llama-index、uncharted 以及 llama2:7b 来生成索引 问题背景: I wanted to use llama-index locally with ollama and llama3:8b to index utf-8 json file. I dont have a gpu. I use uncharted to convert docs into json. Now If it …

Linux openEuler_24.03部署MySQL_8.4.0 LTS安装实测验证安装以及测试连接全过程实操手册

Linux openEuler_24.03部署MySQL_8.4.0 LTS安装实测验证安装以及测试连接全过程实操手册 前言: 什么是 MySQL? MySQL 是一个关系型数据库管理系统,由瑞典 MySQL AB 公司开发,目前属于Oracle 公司。MySQL 是一种关系型数据库管理系统,关系型数据库将数据保存在不同的表中,…

捷配总结的SMT工厂安全防静电规则

SMT工厂须熟记的安全防静电规则! 安全对于我们非常重要,特别是我们这种SMT加工厂,通常我们所讲的安全是指人身安全。 但这里我们须树立一个较为全面的安全常识就是在强调人身安全的同时亦必须注意设备、产品的安全。 电气: 怎样预…

基于python的百度资讯爬虫的设计与实现

研究背景 随着互联网和信息技术的飞速发展,网络已经成为人们获取信息的主要来源之一。特别是搜索引擎,作为信息检索的核心工具,极大地改变了人们获取信息的方式。其中,百度作为中国最受欢迎的搜索引擎之一,其新闻搜索…

Mojo编程语言:AI开发者的新宠儿

Mojo编程语言是AI开发者的新宠儿。 随着人工智能技术的飞速进步,编程语言的选择也变得越来越关键。近年来,Mojo编程语言凭借其独特的优势迅速崛起,成为AI开发者的新宠儿。那么,是什么让Mojo如此特别?为什么它会在众多…

知识分享:网贷大数据查询会影响个人征信吗?

随着人们对传统征信的认识不断加深和对个人征信的重视,部分网友就有一种疑问,那就是关于网贷大数据查询对征信有没有影响的问题,小易大数据小编就用本文就为大家详细讲解一下,希望对你了解网贷大数据有帮助。 首先网贷大数据与征信…

如何通过DBC文件看懂CAN通信矩阵

实现汽车CAN通信开发,必不可少要用到DBC文件和CAN通信矩阵。 CAN通信矩阵是指用于描述 CAN 网络中各个节点之间通信关系的表格或矩阵。它通常记录了每个节点能够发送和接收的消息标识符(ID)以及与其他节点之间的通信权限。 通信矩阵在 CAN 网…

无需业务改造,一套数据库满足 OLTP 和 OLAP,GaiaDB 发布并行查询能力

在企业中通常存在两类数据处理场景,一类是在线事务处理场景(OLTP),例如交易系统,另一类是在线分析处理场景(OLAP),例如业务报表。 OLTP 数据库擅长处理数据的增、删、改&#xff0c…

Elasticsearch 企业级实战 01:Painless 脚本如何调试?

在企业级应用中,Elasticsearch 常常被用来处理复杂的数据查询和操作。 Painless 是 Elasticsearch 的内置脚本语言,虽然强大,但调试起来并不容易。 本文将详细介绍如何在实战中有效调试 Painless 脚本,以提高开发和运维效率。 本文…

百日筑基第二十三天-23种设计模式-创建型总汇

百日筑基第二十三天-23种设计模式-创建型总汇 前言 设计模式可以说是对于七大设计原则的实现。 总体来说设计模式分为三大类: 创建型模式,共五种:单例模式、简单工厂模式、抽象工厂模式、建造者模式、原型模式。结构型模式,共…

java基础之数组,int[]和ArrayList

开始学java的时候,对于 int[] 和ArrayList总是懵懵懂懂的,不知道啥时候用哪个。现在终于了解了,总结一下跟大家分享一下 int[]数组 创建// 方式一:创建一个固定的数组 int arr1 {1,2,3,4,5}; // 方式二:创建一个长度为10的数组 double[] ar…

28_EfficientNetV2网络详解

V1:https://blog.csdn.net/qq_51605551/article/details/140487051?spm1001.2014.3001.5502 1.1 简介 EfficientNetV2是Google研究人员Mingxing Tan和Quoc V. Le等人在2021年提出的一种深度学习模型,它是EfficientNet系列的最新迭代,旨在提…

HLS加密技术:保障流媒体内容安全的利器

随着网络视频内容的爆炸性增长,如何有效保护视频内容的版权和安全成为了一个亟待解决的问题。HLS(HTTP Live Streaming)加密技术作为一种先进的流媒体加密手段,凭借其高效性和安全性,在直播、点播等场景中得到了广泛应…

十大排序 之 选择排序

!!!排序仅针对于数组哦本次排序是按照升序来的哦 介绍 快速排序英文名为SelectSort从数组中找到最小的放到前边 基本思路 1、默认待排序数组中第一个作为最小值2、找待排序数组(注意不是整个数组哦)中真正的最小值3…

【机器学习实战】Datawhale夏令营2:深度学习回顾

#DataWhale夏令营 #ai夏令营 文章目录 1. 深度学习的定义1.1 深度学习&图神经网络1.2 机器学习和深度学习的关系 2. 深度学习的训练流程2.1 数学基础2.1.1 梯度下降法基本原理数学表达步骤学习率 α梯度下降的变体 2.1.2 神经网络与矩阵网络结构表示前向传播激活函数…

《昇思25天学习打卡营第22天|生成式-Diffusion扩散模型》

Diffusion扩散模型 本文基于Hugging Face:The Annotated Diffusion Model一文翻译迁移而来,同时参考了由浅入深了解Diffusion Model一文。 本教程在Jupyter Notebook上成功运行。如您下载本文档为Python文件,执行Python文件时,请…