第100+16步 ChatGPT学习:R实现Xgboost分类

基于R 4.2.2版本演示

一、写在前面

有不少大佬问做机器学习分类能不能用R语言,不想学Python咯。

答曰:可!用GPT或者Kimi转一下就得了呗。

加上最近也没啥内容写了,就帮各位搬运一下吧。

二、R代码实现Xgboost分类

(1)导入数据

我习惯用RStudio自带的导入功能:

(2)建立Xgboost模型(默认参数)

# Load necessary libraries
library(caret)
library(pROC)
library(ggplot2)
library(xgboost)# Assume 'data' is your dataframe containing the data
# Set seed to ensure reproducibility
set.seed(123)# Split data into training and validation sets (80% training, 20% validation)
trainIndex <- createDataPartition(data$X, p = 0.8, list = FALSE)
trainData <- data[trainIndex, ]
validData <- data[-trainIndex, ]# Prepare matrices for XGBoost
dtrain <- xgb.DMatrix(data = as.matrix(trainData[, -which(names(trainData) == "X")]), label = trainData$X)
dvalid <- xgb.DMatrix(data = as.matrix(validData[, -which(names(validData) == "X")]), label = validData$X)# Define parameters for XGBoost
params <- list(booster = "gbtree", objective = "binary:logistic", eta = 0.1, gamma = 0, max_depth = 6, min_child_weight = 1, subsample = 0.8, colsample_bytree = 0.8)# Train the XGBoost model
model <- xgb.train(params = params, data = dtrain, nrounds = 100, watchlist = list(eval = dtrain), verbose = 1)# Predict on the training and validation sets
trainPredict <- predict(model, dtrain)
validPredict <- predict(model, dvalid)# Convert predictions to binary using 0.5 as threshold
#trainPredict <- ifelse(trainPredict > 0.5, 1, 0)
#validPredict <- ifelse(validPredict > 0.5, 1, 0)# Calculate ROC curves and AUC values
#trainRoc <- roc(response = trainData$X, predictor = as.numeric(trainPredict))
#validRoc <- roc(response = validData$X, predictor = as.numeric(validPredict))
trainRoc <- roc(response = as.numeric(trainData$X) - 1, predictor = trainPredict)
validRoc <- roc(response = as.numeric(validData$X) - 1, predictor = validPredict)# Plot ROC curves with AUC values
ggplot(data = data.frame(fpr = trainRoc$specificities, tpr = trainRoc$sensitivities), aes(x = 1 - fpr, y = tpr)) +geom_line(color = "blue") +geom_area(alpha = 0.2, fill = "blue") +geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +ggtitle("Training ROC Curve") +xlab("False Positive Rate") +ylab("True Positive Rate") +annotate("text", x = 0.5, y = 0.1, label = paste("Training AUC =", round(auc(trainRoc), 2)), hjust = 0.5, color = "blue")ggplot(data = data.frame(fpr = validRoc$specificities, tpr = validRoc$sensitivities), aes(x = 1 - fpr, y = tpr)) +geom_line(color = "red") +geom_area(alpha = 0.2, fill = "red") +geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +ggtitle("Validation ROC Curve") +xlab("False Positive Rate") +ylab("True Positive Rate") +annotate("text", x = 0.5, y = 0.2, label = paste("Validation AUC =", round(auc(validRoc), 2)), hjust = 0.5, color = "red")# Calculate confusion matrices based on 0.5 cutoff for probability
confMatTrain <- table(trainData$X, trainPredict >= 0.5)
confMatValid <- table(validData$X, validPredict >= 0.5)# Function to plot confusion matrix using ggplot2
plot_confusion_matrix <- function(conf_mat, dataset_name) {conf_mat_df <- as.data.frame(as.table(conf_mat))colnames(conf_mat_df) <- c("Actual", "Predicted", "Freq")p <- ggplot(data = conf_mat_df, aes(x = Predicted, y = Actual, fill = Freq)) +geom_tile(color = "white") +geom_text(aes(label = Freq), vjust = 1.5, color = "black", size = 5) +scale_fill_gradient(low = "white", high = "steelblue") +labs(title = paste("Confusion Matrix -", dataset_name, "Set"), x = "Predicted Class", y = "Actual Class") +theme_minimal() +theme(axis.text.x = element_text(angle = 45, hjust = 1), plot.title = element_text(hjust = 0.5))print(p)
}# Now call the function to plot and display the confusion matrices
plot_confusion_matrix(confMatTrain, "Training")
plot_confusion_matrix(confMatValid, "Validation")# Extract values for calculations
a_train <- confMatTrain[1, 1]
b_train <- confMatTrain[1, 2]
c_train <- confMatTrain[2, 1]
d_train <- confMatTrain[2, 2]a_valid <- confMatValid[1, 1]
b_valid <- confMatValid[1, 2]
c_valid <- confMatValid[2, 1]
d_valid <- confMatValid[2, 2]# Training Set Metrics
acc_train <- (a_train + d_train) / sum(confMatTrain)
error_rate_train <- 1 - acc_train
sen_train <- d_train / (d_train + c_train)
sep_train <- a_train / (a_train + b_train)
precision_train <- d_train / (b_train + d_train)
F1_train <- (2 * precision_train * sen_train) / (precision_train + sen_train)
MCC_train <- (d_train * a_train - b_train * c_train) / sqrt((d_train + b_train) * (d_train + c_train) * (a_train + b_train) * (a_train + c_train))
auc_train <- roc(response = trainData$X, predictor = trainPredict)$auc# Validation Set Metrics
acc_valid <- (a_valid + d_valid) / sum(confMatValid)
error_rate_valid <- 1 - acc_valid
sen_valid <- d_valid / (d_valid + c_valid)
sep_valid <- a_valid / (a_valid + b_valid)
precision_valid <- d_valid / (b_valid + d_valid)
F1_valid <- (2 * precision_valid * sen_valid) / (precision_valid + sen_valid)
MCC_valid <- (d_valid * a_valid - b_valid * c_valid) / sqrt((d_valid + b_valid) * (d_valid + c_valid) * (a_valid + b_valid) * (a_valid + c_valid))
auc_valid <- roc(response = validData$X, predictor = validPredict)$auc# Print Metrics
cat("Training Metrics\n")
cat("Accuracy:", acc_train, "\n")
cat("Error Rate:", error_rate_train, "\n")
cat("Sensitivity:", sen_train, "\n")
cat("Specificity:", sep_train, "\n")
cat("Precision:", precision_train, "\n")
cat("F1 Score:", F1_train, "\n")
cat("MCC:", MCC_train, "\n")
cat("AUC:", auc_train, "\n\n")cat("Validation Metrics\n")
cat("Accuracy:", acc_valid, "\n")
cat("Error Rate:", error_rate_valid, "\n")
cat("Sensitivity:", sen_valid, "\n")
cat("Specificity:", sep_valid, "\n")
cat("Precision:", precision_valid, "\n")
cat("F1 Score:", F1_valid, "\n")
cat("MCC:", MCC_valid, "\n")
cat("AUC:", auc_valid, "\n")

在R语言中,训练Xgboost模型时,可调参数很多:

1)通用参数

这些参数用于控制XGBoost的整体功能:

①booster: 选择每一步的模型类型,常用的有:

  1. gbtree:基于树的模型(默认)
  2. gblinear:线性模型
  3. dart:Dropouts meet Multiple Additive Regression Trees

②nthread: 并行线程数,默认为最大可用线程数。

③verbosity: 打印消息的详细程度,0 (silent), 1 (warning), 2 (info), 3 (debug)。

2)Booster 参数:

控制每一步提升(booster)的行为:

①eta (或 learning_rate): 学习率,控制每步的收缩以防止过拟合。

②min_child_weight: 决定最小叶子节点样本权重和,用于控制过拟合。

③max_depth: 树的最大深度,限制树的增长以避免过拟合。

④max_leaf_nodes: 最大叶子节点数。

⑤gamma (或 min_split_loss): 分裂节点所需的最小损失函数下降值。

⑥subsample: 训练每棵树时用于随机采样的部分数据比例。

⑦colsample_bytree/colsample_bylevel/colsample_bynode: 构建树时每个级别的特征采样比例。

⑧lambda (或 reg_lambda): L2 正则化项权重。

⑨alpha (或 reg_alpha): L1 正则化项权重。

⑩scale_pos_weight: 在类别不平衡的情况下加权正类的权重。

n_estimators / nrounds:Boosting 过程中的树的数量,或者说是提升迭代的轮数。每轮迭代通常会产生一个新的模型(通常是一棵树)。

3)学习任务参数

用于控制学习任务和相应的学习目标:

①objective: 定义学习任务和相应的学习目标,如:

②binary:logistic: 二分类的逻辑回归,返回预测概率。

③multi:softmax: 多分类的softmax,需要设置 num_class(类别数)。

④reg:squarederror: 回归任务的平方误差。

⑤eval_metric: 验证数据的评估指标,如 rmse、mae、logloss、error (分类错误率)、auc 等。

⑥seed: 随机数种子,用于结果的可重复性。

5)DART Booster特有参数

当 booster 设置为 dart 时:

①sample_type: 采样类型。

②normalize_type: 归一化类型。

③rate_drop: 每次迭代中树的丢弃率。

④skip_drop: 跳过丢弃的概率。

在随便设置了一些参数值,结果如下:

从AUC来看,Xgboost随便一跑直接就过拟合了,验证集的性能相比训练集差距挺大的。得好好调参调参才行。

三、Xgboost手动调参原则

调参的一般策略是,可以先使用网格搜索(Grid Search)、随机搜索(Random Search)或更高级的方法如贝叶斯优化来粗略地确定合适的参数范围,然后在这些范围内细致地调整和验证,以找到最优的模型配置。

主要调的参数:max_depth、min_child_weight、gamma、subsample、colsample_bytree / colsample_bylevel / colsample_bynode、eta、lambda、alpha和n_estimators (或 nrounds)。

max_depth(最大深度):通常范围是3到10。较大的深度可能会导致过拟合,尤其是在小数据集上。

min_child_weight(最小子节点权重):有助于控制过拟合。面对高度不平衡的类别时,可以适当增加此值。

gamma(伽马):从0开始调整,根据控制过拟合的需要逐渐增加。

subsample、colsample_bytree/colsample_bylevel/colsample_bynode(子采样率、按树/层/节点的列采样率):通常范围从0.5到1。这些参数控制了每一步的数据子采样。

eta(学习率):较小的值可以使训练更加稳健,但需要更多的训练迭代。

lambda 和 alpha(L2和L1正则化项):在成本函数中添加正则化项。0到10的范围通常效果不错。

nrounds(树的数量,或迭代次数):更多的树可以模拟更复杂的模式,但也可能导致过拟合。

# Load necessary libraries
library(caret)
library(pROC)
library(ggplot2)
library(xgboost)# Assume 'data' is your dataframe containing the data
# Set seed to ensure reproducibility
set.seed(123)# Convert the target variable to factor if not already
data$X <- factor(data$X)# Split data into training and validation sets (80% training, 20% validation)
trainIndex <- createDataPartition(data$X, p = 0.8, list = FALSE)
trainData <- data[trainIndex, ]
validData <- data[-trainIndex, ]# Prepare matrices for XGBoost
dtrain <- xgb.DMatrix(data = as.matrix(trainData[, -which(names(trainData) == "X")]), label = as.numeric(trainData$X) - 1)
dvalid <- xgb.DMatrix(data = as.matrix(validData[, -which(names(validData) == "X")]), label = as.numeric(validData$X) - 1)# Define parameter grid
depths <- c(4, 6, 10)
weights <- c(1, 5, 10)
gammas <- c(0, 0.2, 0.5)
subsamples <- c(0.5, 0.8, 0.9)
colsamples <- c(0.5, 0.8, 0.9)
etas <- c(0.01, 0.1, 0.2)
lambdas <- c(0, 5, 10)
alphas <- c(0, 1, 5)
nrounds <- c(100, 250, 500)best_auc <- 0
best_params <- list()# Loop through parameter grid
for (max_depth in depths) {for (min_child_weight in weights) {for (gamma in gammas) {for (subsample in subsamples) {for (colsample_bytree in colsamples) {for (eta in etas) {for (lambda in lambdas) {for (alpha in alphas) {for (nround in nrounds) {# Set parameters for this iterationparams <- list(booster = "gbtree",objective = "binary:logistic",eta = eta,gamma = gamma,max_depth = max_depth,min_child_weight = min_child_weight,subsample = subsample,colsample_bytree = colsample_bytree,lambda = lambda,alpha = alpha)# Train the modelmodel <- xgb.train(params = params, data = dtrain, nrounds = nround, watchlist = list(eval = dtrain), verbose = 0)# Predict on the validation setvalidPredict <- predict(model, dvalid)validPredictBinary <- ifelse(validPredict > 0.5, 1, 0)# Calculate AUCvalidRoc <- roc(response = as.numeric(validData$X) - 1, predictor = validPredictBinary)auc_score <- auc(validRoc)# Update best model if current AUC is betterif (auc_score > best_auc) {best_auc <- auc_scorebest_params <- paramsbest_params$nrounds <- nround}}}}}}}}}
}# Print the best AUC and corresponding parameters
print(paste("Best AUC:", best_auc))
print("Best Parameters:")
print(best_params)# After parameter tuning, train the model with best parameters
model <- xgb.train(params = best_params, data = dtrain, nrounds = best_params$nrounds, watchlist = list(eval = dtrain), verbose = 0)# Predict on the training and validation sets using the final model
trainPredict <- predict(model, dtrain)
validPredict <- predict(model, dvalid)# Convert predictions to binary using 0.5 as threshold
#trainPredictBinary <- ifelse(trainPredict > 0.5, 1, 0)
#validPredictBinary <- ifelse(validPredict > 0.5, 1, 0)# Calculate ROC curves and AUC values
#trainRoc <- roc(response = trainData$X, predictor = as.numeric(trainPredict))
#validRoc <- roc(response = validData$X, predictor = as.numeric(validPredict))
trainRoc <- roc(response = as.numeric(trainData$X) - 1, predictor = trainPredict)
validRoc <- roc(response = as.numeric(validData$X) - 1, predictor = validPredict)# Plot ROC curves with AUC values
ggplot(data = data.frame(fpr = trainRoc$specificities, tpr = trainRoc$sensitivities), aes(x = 1 - fpr, y = tpr)) +geom_line(color = "blue") +geom_area(alpha = 0.2, fill = "blue") +geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +ggtitle("Training ROC Curve") +xlab("False Positive Rate") +ylab("True Positive Rate") +annotate("text", x = 0.5, y = 0.1, label = paste("Training AUC =", round(auc(trainRoc), 2)), hjust = 0.5, color = "blue")ggplot(data = data.frame(fpr = validRoc$specificities, tpr = validRoc$sensitivities), aes(x = 1 - fpr, y = tpr)) +geom_line(color = "red") +geom_area(alpha = 0.2, fill = "red") +geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +ggtitle("Validation ROC Curve") +xlab("False Positive Rate") +ylab("True Positive Rate") +annotate("text", x = 0.5, y = 0.2, label = paste("Validation AUC =", round(auc(validRoc), 2)), hjust = 0.5, color = "red")# Calculate confusion matrices based on 0.5 cutoff for probability
confMatTrain <- table(trainData$X, trainPredict >= 0.5)
confMatValid <- table(validData$X, validPredict >= 0.5)# Function to plot confusion matrix using ggplot2
plot_confusion_matrix <- function(conf_mat, dataset_name) {conf_mat_df <- as.data.frame(as.table(conf_mat))colnames(conf_mat_df) <- c("Actual", "Predicted", "Freq")p <- ggplot(data = conf_mat_df, aes(x = Predicted, y = Actual, fill = Freq)) +geom_tile(color = "white") +geom_text(aes(label = Freq), vjust = 1.5, color = "black", size = 5) +scale_fill_gradient(low = "white", high = "steelblue") +labs(title = paste("Confusion Matrix -", dataset_name, "Set"), x = "Predicted Class", y = "Actual Class") +theme_minimal() +theme(axis.text.x = element_text(angle = 45, hjust = 1), plot.title = element_text(hjust = 0.5))print(p)
}# Now call the function to plot and display the confusion matrices
plot_confusion_matrix(confMatTrain, "Training")
plot_confusion_matrix(confMatValid, "Validation")# Extract values for calculations
a_train <- confMatTrain[1, 1]
b_train <- confMatTrain[1, 2]
c_train <- confMatTrain[2, 1]
d_train <- confMatTrain[2, 2]a_valid <- confMatValid[1, 1]
b_valid <- confMatValid[1, 2]
c_valid <- confMatValid[2, 1]
d_valid <- confMatValid[2, 2]# Training Set Metrics
acc_train <- (a_train + d_train) / sum(confMatTrain)
error_rate_train <- 1 - acc_train
sen_train <- d_train / (d_train + c_train)
sep_train <- a_train / (a_train + b_train)
precision_train <- d_train / (b_train + d_train)
F1_train <- (2 * precision_train * sen_train) / (precision_train + sen_train)
MCC_train <- (d_train * a_train - b_train * c_train) / sqrt((d_train + b_train) * (d_train + c_train) * (a_train + b_train) * (a_train + c_train))
auc_train <- roc(response = trainData$X, predictor = trainPredict)$auc# Validation Set Metrics
acc_valid <- (a_valid + d_valid) / sum(confMatValid)
error_rate_valid <- 1 - acc_valid
sen_valid <- d_valid / (d_valid + c_valid)
sep_valid <- a_valid / (a_valid + b_valid)
precision_valid <- d_valid / (b_valid + d_valid)
F1_valid <- (2 * precision_valid * sen_valid) / (precision_valid + sen_valid)
MCC_valid <- (d_valid * a_valid - b_valid * c_valid) / sqrt((d_valid + b_valid) * (d_valid + c_valid) * (a_valid + b_valid) * (a_valid + c_valid))
auc_valid <- roc(response = validData$X, predictor = validPredict)$auc# Print Metrics
cat("Training Metrics\n")
cat("Accuracy:", acc_train, "\n")
cat("Error Rate:", error_rate_train, "\n")
cat("Sensitivity:", sen_train, "\n")
cat("Specificity:", sep_train, "\n")
cat("Precision:", precision_train, "\n")
cat("F1 Score:", F1_train, "\n")
cat("MCC:", MCC_train, "\n")
cat("AUC:", auc_train, "\n\n")cat("Validation Metrics\n")
cat("Accuracy:", acc_valid, "\n")
cat("Error Rate:", error_rate_valid, "\n")
cat("Sensitivity:", sen_valid, "\n")
cat("Specificity:", sep_valid, "\n")
cat("Precision:", precision_valid, "\n")
cat("F1 Score:", F1_valid, "\n")
cat("MCC:", MCC_valid, "\n")
cat("AUC:", auc_valid, "\n")

结果输出:

以上是找到的相对最优参数组合,看看具体性能:

似乎有点提升,过拟合没那么明显了。验证集的性能也有所提高。

有兴趣可以继续调参。

五、最后

数据嘛:

链接:https://pan.baidu.com/s/1rEf6JZyzA1ia5exoq5OF7g?pwd=x8xm

提取码:x8xm

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3247069.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

【北京迅为】《i.MX8MM嵌入式Linux开发指南》-第二篇 Linux系统编程篇-第三十二章 目录IO

i.MX8MM处理器采用了先进的14LPCFinFET工艺&#xff0c;提供更快的速度和更高的电源效率;四核Cortex-A53&#xff0c;单核Cortex-M4&#xff0c;多达五个内核 &#xff0c;主频高达1.8GHz&#xff0c;2G DDR4内存、8G EMMC存储。千兆工业级以太网、MIPI-DSI、USB HOST、WIFI/BT…

Window 安装Open Cascade

目录 一、下载软件 二、环境配置 一、下载软件 下载网址&#xff1a;Download - Open CASCADE Technology 新手推荐exe方式进行安装&#xff0c;直接就可以使用&#xff0c;这里使用 vc140 &#xff0c;配合vs2015来使用。 假设安装在D盘&#xff0c;安装完成如下&#xff…

栈和队列深入浅出

目录&#xff1a; 一. 栈的概念及使用 二.栈的相关经典OJ 三. 队列的概念及使用 二. 队列的相关经典OJ 一. 栈的概念及使用&#xff1a; 1. 概念&#xff1a; 栈一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈…

【前端】ikun-qrcode:极简的二维码生成组件,使用view而非canvas避免层级问题

文章目录 背景ikun-qrcode界面效果如何发布一款自己的插件到uniapp市场。&#xff08;5分钟搞定&#xff09; 背景 之前在uniapp上100行搞定二维码生成&#xff0c; 现在封装为vue组件分享出来&#xff1a; 下载地址&#xff1a; https://ext.dcloud.net.cn/plugin?id19351 …

【C++初阶】C/C++内存管理

【C初阶】C/C内存管理 &#x1f955;个人主页&#xff1a;开敲&#x1f349; &#x1f525;所属专栏&#xff1a;C&#x1f96d; &#x1f33c;文章目录&#x1f33c; 1. C/C内存分布 2. C语言中动态内存管理方式&#xff1a;malloc/calloc/realloc/free 3. C内存管理方式 3…

【Python】AI赋能自动化测试—Applitools Eyes让视觉检查自动化测试更智能、更高效(限时公开)

文章目录 一.视觉回归测试1.什么是视觉回归测试&#xff1f;2.视觉回归测试的必要性3.视觉回归测试是如何工作的&#xff1f;4.常用的视觉回归测试工具有哪些&#xff1f; 二.Applitools Eyes1.是什么2.优缺点3.注册平台账号功能介绍1.界面切换2.单条视觉测试结果解读3.测试视图…

网络开局 与 Underlay网络自动化

由于出口和核心设备 部署在核心机房,地理位置集中,业务复杂,开局通常需要网络工程师进站调测。 因此核心层及核心以上的设备(包含核心层设备,旁挂独立AC设备和出口设备)推荐采用WEB网管开局方式或命令行开局方式。 核心以下的设备(包含汇聚层设备、接入层设备和AP)由于数量众…

发文大刊!Springer旗下1区SCI,收稿量20000+,投稿难度一颗星!

【SciencePub学术】本期&#xff0c;小编给大家推荐的是1本2区计算机综合类SCI&#xff0c;该期刊隶属于Springer出版社&#xff0c;分区逐年上升&#xff0c;现已稳定检索13年&#xff0c;属于Springer旗下的1本口碑优刊。 1 期刊基本信息 【期刊简介】IF&#xff1a;3.0-4.…

【zabbix6监控java-tomcat全流程】

目录 一、监控主机安装zabbix-server1、zabbix的安装2、配置数据库3、为zabbix server配置数据库4、启动服务,web界面安装 二、被监控主机安装tomcat1、安装JDK2、安装tomcat 三、zabbix的服务端安装zabbix-java-gateway四、被监控主机tomcat的配置五、web界面添加主机 一、监控…

python 10的阶乘怎么算

python计算阶乘的方法有很多种&#xff0c;下面给大家介绍三种方法。 第一种&#xff1a;利用functools工具处理 import functools result (lambda k: functools.reduce(int.__mul__, range(1, k 1), 1))(10) print(result) 结果如下&#xff1a; 3628800 第二种&#xff1a…

Tongweb7 日志报错:HttpServletResponse is exceeding the 65535 bytes limit(by lqw)

遇到jsp访问的时候页面加载不全&#xff0c;看tw7日志有如下图信息&#xff1a; 原因&#xff1a; jsp的本质是servlet&#xff0c;编译时会先将他转换成java代码&#xff0c;然后再进行编译。 你的jsp编译成生成的文件太大&#xff0c;导致报错。&#xff08;Java 编译器限制…

【操作系统】定时器(Timer)的实现

这里写目录标题 定时器一、定时器是什么二、标准库中的定时器三、实现定时器 定时器 一、定时器是什么 定时器也是软件开发中的⼀个重要组件.类似于⼀个"闹钟".达到⼀个设定的时间之后,就执行某个指定 好的代码. 定时器是⼀种实际开发中⾮常常用的组件. ⽐如⽹络通…

安全防御---防火墙综合实验3

安全防御—防火墙综合实验3 一、实验拓扑图 二、实验要求 12&#xff0c;对现有网络进行改造升级&#xff0c;将当个防火墙组网改成双机热备的组网形式&#xff0c;做负载分担模式&#xff0c;游客区和DMZ区走FW3&#xff0c;生产区和办公区的流量走FW1 13&#xff0c;办公区…

Jenkins安装nodeJs环境

首先插件市场安装nodeJS插件&#xff0c;我这里已经安装了&#xff0c;没安装的话在 Available plugins 中搜索安装 安装完成后需要下载需要的nodejs版本 新增完成就可以在构建的时候选择当前版本号了

jmeter-beanshell学习11-从文件获取指定数据

参数文件里的参数可能过段时间就不能用了&#xff0c;需要用新的参数。如果有多个交易&#xff0c;读不同的参数文件&#xff0c;但是数据还是一套&#xff0c;就要改多个参数文件。或者只想执行参数文件的某一行数据&#xff0c;又不想调整参数文件顺序。 第一个问题目前想到…

无人驾驶的未来:AI如何重塑我们的出行世界

无人驾驶汽车&#xff0c;作为人工智能&#xff08;AI&#xff09;技术的集大成者&#xff0c;正以前所未有的速度改变着我们的出行方式。从机器学习到计算机视觉&#xff0c;再到人工智能生成内容&#xff08;AIGC&#xff09;&#xff0c;AI技术的每一次进步都在为无人驾驶汽…

C语言 do while循环语句练习 下

猜数字游戏实现 //猜数字游戏 //电脑产生 一个随机数&#xff08;1-100) //猜数字 //猜大了 //猜小了 //直到猜对了&#xff0c;结束 #include <stdlib.h> #include <time.h> void menu() {printf("********************************\n");printf("…

浅谈电商搜索数据指标体系建设

搜索作为电商APP中用户下单的核心场域&#xff0c;具有较高的消费者价值&#xff08;体验&#xff09;、变现价值&#xff08;赚钱&#xff09;、数据沉淀价值&#xff08;研究&#xff09;。因此搭建搜索相关数据指标体系&#xff0c;用于及时监控波动&定位原因就显得至关…

SCI二区TOP|旗鱼优化算法(SFO)原理及实现【免费获取Matlab代码】

目录 1.背景2.算法原理2.1算法思想2.2算法过程 3.结果展示4.参考文献5.代码获取 1.背景 2023年&#xff0c;S Shadravan受到母亲与孩子之间的人际互动启发&#xff0c;提出了旗鱼优化算法&#xff08;SailFish Optimizer, SFO&#xff09;。 2.算法原理 2.1算法思想 SFO灵感…

Java之split 方法

方法的工作原理 split 方法首先检查字符串中是否存在指定的分隔符。如果存在&#xff0c;它会在每个分隔符处切割字符串&#xff0c;生成一个新的字符串数组。如果字符串中没有指定的分隔符&#xff0c;或者分隔符是非空字符但在字符串中不存在&#xff0c;则 split 方法会返回…