动手学深度学习(Pytorch版)代码实践 -循环神经网络-57长短期记忆网络(LSTM)

57长短期记忆网络(LSTM

1.LSTM原理

LSTM是专为解决标准RNN的长时依赖问题而设计的。标准RNN在训练过程中,随着时间步的增加,梯度可能会消失或爆炸,导致模型难以学习和记忆长时间间隔的信息。LSTM通过引入一组称为门的机制来解决这个问题:

  1. 输入门(Input Gate):控制有多少新的信息可以传递到记忆单元中。
  2. 遗忘门(Forget Gate):控制当前记忆单元中有多少信息会被保留。
  3. 输出门(Output Gate):控制记忆单元的输出有多少被传递到下一步。

LSTM还引入了一个称为记忆单元(Cell State)的概念,用于携带长期信息。这些门的组合使得LSTM能够选择性地记住或遗忘信息,从而解决了长时依赖问题。
在这里插入图片描述
在这里插入图片描述

2.优点
  1. 解决梯度消失问题:通过门控机制,LSTM能够有效地传递梯度,避免了梯度消失和爆炸的问题。
  2. 捕捉长时依赖LSTM能够记住和利用长时间间隔的信息,这是标准RNN难以做到的。
  3. 灵活性LSTM适用于各种序列数据处理任务,如时间序列预测、语言建模和序列到序列的翻译等。
3.LSTMGRU的区别

GRU(门控循环单元)是另一种解决长时依赖问题的RNN变体。GRULSTM都引入了门控机制,但它们的具体实现有所不同。

  1. 结构简化GRU的结构比LSTM更简单,参数更少,计算效率更高。
  2. 性能对比:在一些任务上,GRULSTM的性能相当,但在某些情况下,GRU可能表现更好,特别是在较小的数据集或较短的序列上。
  3. 门的数量LSTM有三个门(输入门、遗忘门和输出门),而GRU只有两个门(更新门和重置门)。
4.LSTM代码实践
import torch
from torch import nn
from d2l import torch as d2l
import matplotlib.pyplot as plt# 设置批量大小和序列步数
batch_size, num_steps = 32, 35
# 加载时间机器数据集
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)# 初始化LSTM模型参数
def get_lstm_params(vocab_size, num_hiddens, device):# 输入输出的维度大小num_inputs = num_outputs = vocab_size# 正态分布初始化权重def normal(shape):return torch.randn(size=shape, device=device) * 0.01# 三个权重参数(用于输入门、遗忘门、输出门和候选记忆元)def three():return (normal((num_inputs, num_hiddens)),  # 输入到隐藏状态的权重normal((num_hiddens, num_hiddens)),  # 隐藏状态到隐藏状态的权重torch.zeros(num_hiddens, device=device))  # 偏置W_xi, W_hi, b_i = three()  # 输入门参数W_xf, W_hf, b_f = three()  # 遗忘门参数W_xo, W_ho, b_o = three()  # 输出门参数W_xc, W_hc, b_c = three()  # 候选记忆元参数# 输出层参数W_hq = normal((num_hiddens, num_outputs))  # 隐藏状态到输出的权重b_q = torch.zeros(num_outputs, device=device)  # 输出偏置# 将所有参数附加到参数列表中params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc,b_c, W_hq, b_q]for param in params:param.requires_grad_(True)  # 设置参数需要梯度return params# 初始化LSTM的隐藏状态
def init_lstm_state(batch_size, num_hiddens, device):return (torch.zeros((batch_size, num_hiddens), device=device),  # 隐藏状态torch.zeros((batch_size, num_hiddens), device=device))  # 记忆元# LSTM前向传播
def lstm(inputs, state, params):[W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,W_hq, b_q] = params(H, C) = state  # 隐藏状态和记忆元outputs = []for X in inputs:# 输入门I = torch.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)# 遗忘门F = torch.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)# 输出门O = torch.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)# 候选记忆元C_tilda = torch.tanh((X @ W_xc) + (H @ W_hc) + b_c)# 更新记忆元C = F * C + I * C_tilda# 更新隐藏状态H = O * torch.tanh(C)# 计算输出Y = (H @ W_hq) + b_qoutputs.append(Y)return torch.cat(outputs, dim=0), (H, C)  # 返回输出和状态# 训练和预测模型
vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
# 创建自定义的LSTM模型
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_lstm_params,init_lstm_state, lstm)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
plt.show()
# perplexity 1.3, 34433.0 tokens/sec on cuda:0
# 预测结果示例:time traveller conellace there wardeal that are almost us we hou# 使用PyTorch的简洁实现
num_inputs = vocab_size
lstm_layer = nn.LSTM(num_inputs, num_hiddens)  # 创建LSTM层
model = d2l.RNNModel(lstm_layer, len(vocab))  # 创建模型
model = model.to(device)  # 将模型移动到GPU
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
plt.show()
# perplexity 1.0, 317323.7 tokens/sec on cuda:0
# 预测结果示例:time travelleryou can show black is white by argument said filby

自定义的LSTM模型:

在这里插入图片描述
简洁实现:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3227327.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

碾压SOTA!最新视觉SLAM:渲染速度提升176倍,内存占用减少150%

视觉SLAM,一种结合了CV与机器人技术的先进方法。与激光SLAM相比,它成本低廉且信息量大,易于安装,拥有更优秀的场景识别能力,因此在自动驾驶等许多场景上都非常适用,是学术界与工业界共同关注的热门研究方向…

如何将heic格式转换jpg?四种将heic转换成jpg的方法!

如何将heic格式转换jpg?在现今的数字图像处理领域,Heic格式作为一种被吹捧的创新型图像格式,以其先进的压缩技术,迅速减小了图片文件的大小,然而,尽管其有许多优点,实际使用中Heic格式却带来了一…

RSA加密算法因N强度不足破解实例

已知如下RSA密文和公钥信息,要求解密得到明文。 ----------------------- ciphertext(HEX) 94808F954A8AF9B9 N(HEX) C6EAD137492B4631 e(HEX) 10001 ------------------------ 分析过…

【Linux】命令执行的判断依据:;,,||

在某些情况下,很多命令我想要一次输入去执行,而不想要分次执行时,该如何是好? 基本上有两个选择, 一个是通过shell脚本脚本去执行,一种则是通过下面的介绍来一次入多个命令。 1.cmd:cmd&#…

【Android】基于 LocationManager 原生实现定位打卡

目录 前言一、实现效果二、定位原理三、具体实现1. 获取权限2. 页面绘制3. 获取经纬度4. 方法调用5. 坐标转换6. 距离计算7. 完整代码 前言 最近公司有个新需求,想要用定位进行考勤打卡,在距离打卡地一定范围内才可以进行打卡。本文将借鉴 RxTool 的 Rx…

buuctf面具下的flag

细节: 这道题可能因为是vmdk的原因 导致在window上 7z无法得到全部的信息 所以最后解压要在linux系统上 解密网站 Brainfuck/Ook! Obfuscation/Encoding [splitbrain.org] 这道题010打开,可以发现里面隐藏了很多 binwalk解压 两个文件 vmdk可以直接 用7z解压 7z x flag.…

常用网络概念

📑打牌 : da pai ge的个人主页 🌤️个人专栏 : da pai ge的博客专栏 ☁️宝剑锋从磨砺出,梅花香自苦寒来 ​​ 目录 了解组织 局域网技术 …

20240711 每日AI必读资讯

🎨Runway Gen-3 Alpha 详细使用教程以及提示词指南大全 - 7月9日,著名生成式AI平台Runway在官网公布了,最新发布的文生视频模型Gen-3 Alpha的文本提示教程。 - 从技术层面来说,输入的文本提示会被转换成“向量”,这些…

怎么提高音频声音大小?提高音频声音大小的四种方法

怎么提高音频声音大小?在音频处理和编辑中,增加声音的音量是一个常见的需求,尤其是在确保音频清晰度和听觉效果的同时。调整音频的音量不仅仅是简单地提高音频的响度,它也涉及到如何保持音质的高标准,确保没有失真或削…

如何写好品牌宣传稿提升品牌曝光?看这篇文章就够了

在这个信息爆炸的时代,一句精炼而富有力量的宣传语,足以让品牌在万千竞争者中脱颖而出。撰写一篇成功的品牌宣传稿,不仅是对文字艺术的驾驭,也是对品牌灵魂的深刻洞察与精准传达,更是连接品牌与消费者情感与认知的桥梁…

怎样将aac转换mp3格式?推荐四个aac转MP3的方法

怎样将aac转换mp3格式?当需要将aac格式音频转换为MP3格式时,有几种方法可以轻松实现这一目标。MP3是一种广泛支持的音频格式,几乎所有设备和平台都能播放MP3文件,包括各种音乐播放器、手机、平板电脑和汽车音响系统。而且它也提供…

实习记录3

1.Mybaits懒加载 MyBatis 延迟加载(懒加载)一篇入门-腾讯云开发者社区-腾讯云 (tencent.com) 2.高级映射 106-高级映射之多对一映射第一种方式_哔哩哔哩_bilibili 3.TableId(type IdType.INPUT) Mybatis-plus 主键生成策略_mybatis-plus 自增主键等于…

使用PEFT库进行ChatGLM3-6B模型的QLORA高效微调

PEFT库进行ChatGLM3-6B模型QLORA高效微调 QLORA微调ChatGLM3-6B模型安装相关库使用ChatGLM3-6B模型GPU显存占用准备数据集加载数据集数据处理数据集处理加载量化模型-4bit预处理量化模型配置LoRA适配器训练超参数配置开始训练保存LoRA模型模型推理合并模型使用微调后的模型 QLO…

Apache功能配置:访问控制、日志分割; 部署AWStats日志分析工具

目录 保持连接 访问控制 只允许指定ip访问 拒绝指定主机其他正常访问 用户授权 日志格式 日志分割 操作步骤 使用第三方工具cronolog分割日志 AWStats日志分析 操作步骤 访问AwStats分析系统 保持连接 Apache通过设置配置文件httpd-default.conf中相关的连接保持参…

Everything搜索无法搜索到桌面的文件(无法检索C盘 或 特定路径的文件)

现象描述 在Everything搜索框中输入桌面已存在的文件或随便已知位置的文件,无法找到。 搜索时检索结果中明显缺少部分磁盘位置的,例如无法检索C盘,任意关键字搜索时结果中没有位于C盘的,无论怎样都搜不到C盘文件。 解决方法 在…

读论文《Unpaired Unsupervised CT Metal ArtifactReduction》

论文题目:非配对无监督CT金属伪影还原 项目地址:GitHub - ChenBoYam/Metal-Artifact-Reduction: Eliminate metal artifacts from CT images Semi-supervised learning 重点应该就是怎么实现无监督吧 先看论文,再看代码 摘要:…

海南云亿商务咨询有限公司抖音电商服务领军者

在当今这个数字化高速发展的时代,抖音电商已经成为了一种不可忽视的新型商业模式。作为行业的佼佼者,海南云亿商务咨询有限公司凭借其专业团队和卓越的服务能力,为众多商家提供了一站式的抖音电商解决方案,助力商家在竞争激烈的市…

springboot“小鱼在乎”日程计划系统-计算机毕业设计源码51307

摘要 本文介绍了一种基于微信小程序和Spring Boot后端服务的“小鱼在乎”日程计划系统。该系统结合了前端微信小程序的便捷交互与后端Spring Boot框架的稳健性能,为用户提供了一款功能全面、体验出色的日程管理工具。 “小鱼在乎”日程计划系统涵盖了多种功能&#…

空中交通新动能!2024深圳eVTOL展动力电池展区核心内容抢先看!

空中交通新动能!2024深圳eVTOL展动力电池展区核心内容抢先看! 关键词:2024深圳eVTOL展 动力电池 高能量密度电池 高性能电池材料 作为2024深圳eVTOL展重要组成部分,2024深圳eVTOL动力电池展将于9月23-25日在深圳坪山燕子湖国际会…

硅谷甄选二(登录)

一、登录路由静态组件 src\views\login\index.vue <template><div class"login_container"><!-- Layout 布局 --><el-row><el-col :span"12" :xs"0"></el-col><el-col :span"12" :xs"2…