Redis+Caffeine 实现两级缓存实战

Redis+Caffeine 实现两级缓存

背景

​ 事情的开始是这样的,前段时间接了个需求,给公司的商城官网提供一个查询预计送达时间的接口。接口很简单,根据请求传的城市+仓库+发货时间查询快递的预计送达时间。因为商城下单就会调用这个接口,所以对接口的性能要求还是挺高的,据老员工的说法是特别是大促的时候,访问量还是比较大的。

​ 因为数据量不是很大,每天会全量推今天和明天的预计送达时间到MySQL,总数据量大约7k+。每次推完数据后会把数据全量写入到redis中,做一个缓存预热,然后设置过期时间为1天。

​ 鉴于之前Redis集群出现过压力过大查询缓慢的情况,进一步保证接口的高性能和高可用,防止redis出现压力大,查询慢,缓存雪崩,缓存穿透等问题,我们最终采用了Reids + Caffeine两级缓存的策略。

本地缓存优缺点

优点:

  1. 本地缓存,基于本地内存,查询速度是很快的。适用于:实时性要求不高,更新频率不高等场景。(我们的数据每天凌晨更新一次,总量7k左右)
  2. 查询本地缓存与查询远程缓存相比可以减少网络的I/O,降低网络上的一些消耗。(我们的redis之前出现过查询缓慢的情况)

缺点:

  1. Caffeine既然是本地缓存,在分布式环境的情况下就要考虑各个节点之间缓存的一致性问题,一个节点的本地缓存更新了,怎么可以同步到其他的节点。
  2. Caffeine不支持持久化的存储。
  3. Caffeine使用本地内存,需要合理设置大小,避免内存溢出。

流程图

在这里插入图片描述

代码实现

MySQL表

CREATE TABLE `t_estimated_arrival_date`  (`id` int(11) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT '主键id',`warehouse_id` varchar(32) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL COMMENT '货仓id',`warehouse` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL COMMENT '发货仓',`city` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL COMMENT '签收城市',`delivery_date` date NULL DEFAULT NULL COMMENT '发货时间',`estimated_arrival_date` date NULL DEFAULT NULL COMMENT '预计到货日期',PRIMARY KEY (`id`) USING BTREE,UNIQUE INDEX `uk_warehouse_id_city_delivery_date`(`warehouse_id`, `city`, `delivery_date`) USING BTREE
) ENGINE = InnoDB  COMMENT = '预计到货时间表(具体到day:T, T+1,近90天到货时间众数)' ROW_FORMAT = Dynamic;INSERT INTO `t_estimated_arrival_date` VALUES (9, '6', '湖熟正常仓', '兰州市', '2024-07-08', '2024-07-10');
INSERT INTO `t_estimated_arrival_date` VALUES (10, '6', '湖熟正常仓', '兰州市', '2024-07-09', '2024-07-11');
INSERT INTO `t_estimated_arrival_date` VALUES (11, '6', '湖熟正常仓', '兴安盟', '2024-07-08', '2024-07-11');
INSERT INTO `t_estimated_arrival_date` VALUES (12, '6', '湖熟正常仓', '兴安盟', '2024-07-09', '2024-07-12');
INSERT INTO `t_estimated_arrival_date` VALUES (13, '6', '湖熟正常仓', '其他', '2024-07-08', '2024-07-19');
INSERT INTO `t_estimated_arrival_date` VALUES (14, '6', '湖熟正常仓', '其他', '2024-07-09', '2024-07-20');
INSERT INTO `t_estimated_arrival_date` VALUES (15, '6', '湖熟正常仓', '内江市', '2024-07-08', '2024-07-10');
INSERT INTO `t_estimated_arrival_date` VALUES (16, '6', '湖熟正常仓', '内江市', '2024-07-09', '2024-07-11');
INSERT INTO `t_estimated_arrival_date` VALUES (17, '6', '湖熟正常仓', '凉山彝族自治州', '2024-07-08', '2024-07-11');
INSERT INTO `t_estimated_arrival_date` VALUES (18, '6', '湖熟正常仓', '凉山彝族自治州', '2024-07-09', '2024-07-12');
INSERT INTO `t_estimated_arrival_date` VALUES (19, '6', '湖熟正常仓', '包头市', '2024-07-08', '2024-07-11');
INSERT INTO `t_estimated_arrival_date` VALUES (20, '6', '湖熟正常仓', '包头市', '2024-07-09', '2024-07-12');
INSERT INTO `t_estimated_arrival_date` VALUES (21, '6', '湖熟正常仓', '北京城区', '2024-07-08', '2024-07-10');
INSERT INTO `t_estimated_arrival_date` VALUES (22, '6', '湖熟正常仓', '北京城区', '2024-07-09', '2024-07-11');

pom.xm

        <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-aop</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency><!--redis连接池--><dependency><groupId>org.apache.commons</groupId><artifactId>commons-pool2</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-cache</artifactId></dependency><dependency><groupId>com.github.ben-manes.caffeine</groupId><artifactId>caffeine</artifactId><version>2.9.2</version></dependency><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.28</version></dependency><dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.3.1</version></dependency>

application.yml

server:port: 9001
spring:application:name: springboot-redisdatasource:name: demourl: jdbc:mysql://localhost:3306/test?userUnicode=true&&characterEncoding=utf8&allowMultiQueries=true&useSSL=falsedriver-class-name: com.mysql.cj.jdbc.Driverusername: password: # mybatis相关配置mybatis-plus:mapper-locations: classpath:mapper/*.xmlconfiguration:cache-enabled: trueuse-generated-keys: truedefault-executor-type: REUSEuse-actual-param-name: true# 打印日志#    log-impl: org.apache.ibatis.logging.stdout.StdOutImplredis:host: 192.168.117.73port: 6379password: root
#  redis:
#    lettuce:
#      cluster:
#        refresh:
#          adaptive: true
#          period: 10S
#      pool:
#        max-idle: 50
#        min-idle: 8
#        max-active: 100
#        max-wait: -1
#    timeout: 100000
#    cluster:
#      nodes:
#        - 192.168.117.73:6379
logging:level:com.itender.redis.mapper: debug

配置类

  • RedisConfig
/*** @author yuanhewei* @date 2024/5/31 16:18* @description*/
@Configuration
public class RedisConfig {@Beanpublic RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory connectionFactory) {RedisTemplate<String, Object> redisTemplate = new RedisTemplate<>();redisTemplate.setConnectionFactory(connectionFactory);Jackson2JsonRedisSerializer<Object> serializer = new Jackson2JsonRedisSerializer<>(Object.class);ObjectMapper mapper = new ObjectMapper();mapper.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);mapper.activateDefaultTyping(LaissezFaireSubTypeValidator.instance, ObjectMapper.DefaultTyping.NON_FINAL, JsonTypeInfo.As.PROPERTY);serializer.setObjectMapper(mapper);// 如果不序列化在key value 使用redis客户端工具 直连redis服务器 查看数据时 前面会有一个 \xac\xed\x00\x05t\x00\x05 字符串// StringRedisSerializer 来序列化和反序列化 String 类型 redis 的 key valueredisTemplate.setKeySerializer(new StringRedisSerializer());redisTemplate.setValueSerializer(serializer);// StringRedisSerializer 来序列化和反序列化 hash 类型 redis 的 key valueredisTemplate.setHashKeySerializer(new StringRedisSerializer());redisTemplate.setHashValueSerializer(serializer);redisTemplate.afterPropertiesSet();return redisTemplate;}
}
  • CaffeineConfig
/*** @author yuanhewei* @date 2024/7/9 14:16* @description*/
@Configuration
public class CaffeineConfig {/*** Caffeine 配置类*  initialCapacity:初始缓存空间大小*  maximumSize:缓存的最大数量,设置这个值避免内存溢出*  expireAfterWrite:指定缓存的过期时间,是最后一次写操作的一个时间*  容量的大小要根据自己的实际应用场景设置** @return*/@Beanpublic Cache<String, Object> caffeineCache() {return Caffeine.newBuilder()// 初始大小.initialCapacity(128)//最大数量.maximumSize(1024)//过期时间.expireAfterWrite(60, TimeUnit.SECONDS).build();}@Beanpublic CacheManager cacheManager(){CaffeineCacheManager cacheManager=new CaffeineCacheManager();cacheManager.setCaffeine(Caffeine.newBuilder().initialCapacity(128).maximumSize(1024).expireAfterWrite(60, TimeUnit.SECONDS));return cacheManager;}
}

Mapper

这里采用了Mybatis Plus

/*** @author yuanhewei* @date 2024/7/9 18:11* @description*/
@Mapper
public interface EstimatedArrivalDateMapper extends BaseMapper<EstimatedArrivalDateEntity> {} 

Service

/*** @author yuanhewei* @date 2024/7/9 14:25* @description*/
public interface DoubleCacheService {/*** 查询一级送达时间-常规方式** @param request* @return*/EstimatedArrivalDateEntity getEstimatedArrivalDateCommon(EstimatedArrivalDateEntity request);/*** 查询一级送达时间-注解方式** @param request* @return*/EstimatedArrivalDateEntity getEstimatedArrivalDate(EstimatedArrivalDateEntity request);
}

实现类

/*** @author yuanhewei* @date 2024/7/9 14:26* @description*/
@Slf4j
@Service
public class DoubleCacheServiceImpl implements DoubleCacheService {@Resourceprivate Cache<String, Object> caffeineCache;@Resourceprivate RedisTemplate<String, Object> redisTemplate;@Resourceprivate EstimatedArrivalDateMapper estimatedArrivalDateMapper;@Overridepublic EstimatedArrivalDateEntity getEstimatedArrivalDateCommon(EstimatedArrivalDateEntity request) {String key = request.getDeliveryDate() + RedisConstants.COLON + request.getWarehouseId() + RedisConstants.COLON + request.getCity();log.info("Cache key: {}", key);Object value = caffeineCache.getIfPresent(key);if (Objects.nonNull(value)) {log.info("get from caffeine");return EstimatedArrivalDateEntity.builder().estimatedArrivalDate(value.toString()).build();}value = redisTemplate.opsForValue().get(key);if (Objects.nonNull(value)) {log.info("get from redis");caffeineCache.put(key, value);return EstimatedArrivalDateEntity.builder().estimatedArrivalDate(value.toString()).build();}log.info("get from mysql");DateTime deliveryDate = DateUtil.parse(request.getDeliveryDate(), "yyyy-MM-dd");EstimatedArrivalDateEntity estimatedArrivalDateEntity = estimatedArrivalDateMapper.selectOne(new QueryWrapper<EstimatedArrivalDateEntity>().eq("delivery_date", deliveryDate).eq("warehouse_id", request.getWarehouseId()).eq("city", request.getCity()));redisTemplate.opsForValue().set(key, estimatedArrivalDateEntity.getEstimatedArrivalDate(), 120, TimeUnit.SECONDS);caffeineCache.put(key, estimatedArrivalDateEntity.getEstimatedArrivalDate());return EstimatedArrivalDateEntity.builder().estimatedArrivalDate(estimatedArrivalDateEntity.getEstimatedArrivalDate()).build();}@DoubleCache(cacheName = "estimatedArrivalDate", key = {"#request.deliveryDate", "#request.warehouseId", "#request.city"},type = DoubleCache.CacheType.FULL)@Overridepublic EstimatedArrivalDateEntity getEstimatedArrivalDate(EstimatedArrivalDateEntity request) {DateTime deliveryDate = DateUtil.parse(request.getDeliveryDate(), "yyyy-MM-dd");EstimatedArrivalDateEntity estimatedArrivalDateEntity = estimatedArrivalDateMapper.selectOne(new QueryWrapper<EstimatedArrivalDateEntity>().eq("delivery_date", deliveryDate).eq("warehouse_id", request.getWarehouseId()).eq("city", request.getCity()));return EstimatedArrivalDateEntity.builder().estimatedArrivalDate(estimatedArrivalDateEntity.getEstimatedArrivalDate()).build();}
}

这里的代码本来是采用了常规的写法,没有采用自定义注解的方式,注解的方式是参考了后面那位大佬的文章,加以修改实现的。因为我的CacheKey可能存在多个属性值的组合。

Annotitions

/*** @author yuanhewei* @date 2024/7/9 14:51* @description*/
@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface DoubleCache {/*** 缓存名称** @return*/String cacheName();/*** 缓存的key,支持springEL表达式** @return*/String[] key();/*** 过期时间,单位:秒** @return*/long expireTime() default 120;/*** 缓存类型** @return*/CacheType type() default CacheType.FULL;enum CacheType {/*** 存取*/FULL,/*** 只存*/PUT,/*** 删除*/DELETE}
}

Aspect

/*** @author yuanhewei* @date 2024/7/9 14:51* @description*/
@Slf4j
@Component
@Aspect
public class DoubleCacheAspect {@Resourceprivate Cache<String, Object> caffeineCache;@Resourceprivate RedisTemplate<String, Object> redisTemplate;@Pointcut("@annotation(com.itender.redis.annotation.DoubleCache)")public void doubleCachePointcut() {}@Around("doubleCachePointcut()")public Object doAround(ProceedingJoinPoint point) throws Throwable {MethodSignature signature = (MethodSignature) point.getSignature();Method method = signature.getMethod();// 拼接解析springEl表达式的mapString[] paramNames = signature.getParameterNames();Object[] args = point.getArgs();TreeMap<String, Object> treeMap = new TreeMap<>();for (int i = 0; i < paramNames.length; i++) {treeMap.put(paramNames[i], args[i]);}DoubleCache annotation = method.getAnnotation(DoubleCache.class);String elResult = DoubleCacheUtil.arrayParse(Lists.newArrayList(annotation.key()), treeMap);String realKey = annotation.cacheName() + RedisConstants.COLON + elResult;// 强制更新if (annotation.type() == DoubleCache.CacheType.PUT) {Object object = point.proceed();redisTemplate.opsForValue().set(realKey, object, annotation.expireTime(), TimeUnit.SECONDS);caffeineCache.put(realKey, object);return object;}// 删除else if (annotation.type() == DoubleCache.CacheType.DELETE) {redisTemplate.delete(realKey);caffeineCache.invalidate(realKey);return point.proceed();}// 读写,查询CaffeineObject caffeineCacheObj = caffeineCache.getIfPresent(realKey);if (Objects.nonNull(caffeineCacheObj)) {log.info("get data from caffeine");return caffeineCacheObj;}// 查询RedisObject redisCache = redisTemplate.opsForValue().get(realKey);if (Objects.nonNull(redisCache)) {log.info("get data from redis");caffeineCache.put(realKey, redisCache);return redisCache;}log.info("get data from database");Object object = point.proceed();if (Objects.nonNull(object)) {// 写入Redislog.info("get data from database write to cache: {}", object);redisTemplate.opsForValue().set(realKey, object, annotation.expireTime(), TimeUnit.SECONDS);// 写入CaffeinecaffeineCache.put(realKey, object);}return object;}
}

因为注解上的配置要支持Spring的EL表达式。

public static String parse(String elString, SortedMap<String, Object> map) {elString = String.format("#{%s}", elString);// 创建表达式解析器ExpressionParser parser = new SpelExpressionParser();// 通过evaluationContext.setVariable可以在上下文中设定变量。EvaluationContext context = new StandardEvaluationContext();map.forEach(context::setVariable);// 解析表达式Expression expression = parser.parseExpression(elString, new TemplateParserContext());// 使用Expression.getValue()获取表达式的值,这里传入了Evaluation上下文return expression.getValue(context, String.class);}public static String arrayParse(List<String> elStrings, SortedMap<String, Object> map) {List<String> result = Lists.newArrayList();elStrings.forEach(elString -> {elString = String.format("#{%s}", elString);// 创建表达式解析器ExpressionParser parser = new SpelExpressionParser();// 通过evaluationContext.setVariable可以在上下文中设定变量。EvaluationContext context = new StandardEvaluationContext();map.forEach(context::setVariable);// 解析表达式Expression expression = parser.parseExpression(elString, new TemplateParserContext());// 使用Expression.getValue()获取表达式的值,这里传入了Evaluation上下文result.add(expression.getValue(context, String.class));});return String.join(RedisConstants.COLON, result);}

Controller

/*** @author yuanhewei* @date 2024/7/9 14:14* @description*/
@RestController
@RequestMapping("/doubleCache")
public class DoubleCacheController {@Resourceprivate DoubleCacheService doubleCacheService;@PostMapping("/common")public EstimatedArrivalDateEntity getEstimatedArrivalDateCommon(@RequestBody EstimatedArrivalDateEntity estimatedArrivalDate) {return doubleCacheService.getEstimatedArrivalDateCommon(estimatedArrivalDate);}@PostMapping("/annotation")public EstimatedArrivalDateEntity getEstimatedArrivalDate(@RequestBody EstimatedArrivalDateEntity estimatedArrivalDate) {return doubleCacheService.getEstimatedArrivalDate(estimatedArrivalDate);}
}

代码中演示了Redis + Caffeine实现两级缓存的方式,一种是传统常规的方式,另一种是基于注解的方式实现的。具体实现可以根据自己项目中的实际场景。

最后的测试结果也是两种方式都可以实现查询先走一级缓存;一级缓存不存在查询二级缓存,然后写入一级缓存;二级缓存不存在,查询MySQL然后写入二级缓存,再写入一级缓存的目的。测试结果就不贴出来了

总结

本文介绍Redis+Caffeine实现两级缓存的方式。一种是常规的方式,一种的基于注解的方式。具体的实现可根据自己项目中的业务场景。

至于为什么要用Redis+Caffeine的方式,文章也提到了,目前我们Redis集群压力还算挺大的,而且接口对RT的要求也是比较高的。有一点好的就是我们的数据是每天全量推一边,总量也不大,实时性要求也不强。所以就很适合本地缓存的方式。

使用本地缓存也要注意设置容量的大小和过期时间,否则容易出现内存溢出。

其实现实中很多的场景直接使用Redis就可以搞定的,没必要硬要使用Caffeine。这里也只是简单的介绍了最简单基础的实现方式。对于其他一些复杂的场景还要根据自己具体的业务进行设计。我自己也是边学边用。如果有问题或者其他好的实现方式欢迎各位大佬评论,一起进步!!!

参考

https://blog.csdn.net/weixin_45334346/article/details/136310010

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3226988.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

基于 TI AM62 测试 QtWayland 部署

By Toradex秦海 1). 简介 目前主流的 ARM 平台嵌入式 Linux BSP 的显示后端基本都已经从 X11 升级到了 Wayland&#xff0c; 而常用的 Wayland Compositor - Weston 对于 Linux 下常用的 Qt 图形界面开发框架的一些 Plugin (比如 Qt VirtualKeyboard) 的配合并不完善&#xf…

科普文:HTTPS协议

概叙 HTTPS&#xff08;Secure Hypertext Transfer Protocol&#xff09;即安全超文本传输协议&#xff0c;是一个安全通信通道。用于计算机网络的安全通信&#xff0c;已经在互联网得到广泛应用。 HTTPS 是基于 HTTP 的扩展&#xff0c;其相当于 HTTP协议SSL&#xff08;安全套…

什么是光储充一体化? 光储充一体化有什么优势?

大部分省份划定配储的比例不低于10% “光储充一体化”政策文件:国家层面政策名称 政策要点 发布时间 发布单位 结合实际建设光伏发电、储能、充换电一体化的充电基础设施。中央财政将安排奖励资金支持试点县开展试点工作&#xff0c;示范期内&#xff0c;每年均达到最高目标的试…

【教程】Hexo 部署到 Github Page 后,自定义域名失效的问题

目录 前言&问题描述解决方案细节 前言&问题描述 近期给 Github Page 上托管的静态网站映射了自定义域名&#xff08;aiproducthome.top&#xff09;&#xff0c;之后发现每次更新并部署 hexo 到 Github Page &#xff08;hexo d&#xff09;后就会出现自定义域名失效的…

【linux】 sudo apt update报错——‘由于没有公钥,无法验证下列签名: NO_PUBKEY 3B4FE6ACC0B21F32’

【linux】 sudo apt update报错——‘由于没有公钥&#xff0c;无法验证下列签名&#xff1a; NO_PUBKEY 3B4FE6ACC0B21F32’ 在运行sudo apt update时遇到报错&#xff0c;由于没有公钥&#xff0c;无法验证下列签名&#xff1a; NO_PUBKEY 3B4FE6ACC0B21F32 解决方法&#x…

印刷企业如何判断数字工厂管理系统的实施周期

在数字化转型的浪潮中&#xff0c;印刷企业正积极拥抱新技术以提升生产效率、优化成本结构并增强市场竞争力。数字工厂管理系统的引入&#xff0c;作为这一转型的关键步骤&#xff0c;不仅能够实现生产流程的自动化、智能化监控&#xff0c;还能显著提升数据分析能力和决策效率…

【C语言】【排序算法】----- 归并排序

由于最近要考试&#xff0c;好久没有发博客了&#xff0c;非常抱歉大家对我的支持。之后我会不断更新博客&#xff0c;继续创作出高质量的文章&#xff0c;希望能帮到大家&#xff01; 文章目录 一、归并排序基本思想二、递归实现三、非递归实现四、效率分析 一、归并排序基本…

LlamaFactory可视化微调大模型 - 参数详解

LlamaFactory 前言 LLaMA Factory 是一个用于微调大型语言模型的强大工具,特别是针对 LLaMA 系列模型。 可以适应不同的模型架构和大小。 支持多种微调技术,如全参数微调、LoRA( Low-Rank Adaptation )、QLoRA( Quantized LoRA )等。 还给我们提供了简单实用的命令行…

汉初三杰韩信,是不是颍川人

再重复一次&#xff0c;此韩信非彼韩信&#xff0c;说的是汉初三杰淮阴侯韩信&#xff0c;不是韩王信。 他俩的共同之处还真多&#xff0c;同名同姓&#xff0c;都被封王&#xff0c;八大异姓王韩姓占了两位。而且&#xff0c;结局也一样&#xff0c;都因反判罪被朝廷处死。这…

springboot篮球馆管理系统-计算机毕业设计源码21945

目 录 摘要 1 绪论 1.1选题背景 1.2研究意义 1.3论文结构与章节安排 2 篮球馆管理系统系统分析 2.1 可行性分析 2.1.1 技术可行性分析 2.1.2 经济可行性分析 2.1.3 法律可行性分析 2.2 系统功能分析 2.2.1 功能性分析 2.2.2 非功能性分析 2.3 系统用例分析 2.4 …

NodeJS小饰品销售管理系统-计算机毕业设计源码21597

摘 要 在当今的数字化时代&#xff0c;电子商务已经成为了商业领域中不可或缺的一部分。随着消费者对于购物体验的要求越来越高&#xff0c;一个高效、便捷、用户友好的小饰品销售管理系统显得尤为重要。 本系统旨在利用 JavaScript 技术&#xff0c;设计并实现一个功能强大的小…

越南语是一门什么样的语言?如何学好越南语?

越南语是一种南亚语系越芒语族的语言&#xff0c;具有丰富的汉语借词&#xff0c;尤其在抽象概念的表达上&#xff0c;汉越词汇占有很大比例。作为一种声调语言&#xff0c;越南语拥有六个声调&#xff0c;这使得其发音具有音乐性和节奏感。它是一种孤立语&#xff0c;依赖于语…

强化学习实战2:动手写迷宫环境

迷宫环境介绍与创建 迷宫环境图示如下&#xff1a; 如图所示&#xff0c;其为一个 三乘三 的网格世界&#xff0c;我们要让 agent 从 S0 采取策略出发&#xff0c;然后走到 S8&#xff0c;图中红线部分表示障碍不能逾越&#xff0c;其中 S1 和 S4 之间有一个障碍&#xff0c;S…

换新启航环游浪漫新篇章

✨&#x1f389;【焕新启航&#xff0c;环游浪漫新篇章 —— 《焕新环游传》盛大开播】&#x1f389;✨在时光的温柔转角&#xff0c;一场前所未有的梦幻之旅悄然拉开序幕&#xff01;&#x1f31f;《焕新环游传》—— 这不仅仅是一部剧集的开播&#xff0c;更是对过往角色遗憾…

Springboot 设置个性化banner

在 Spring Boot 中自定义 banner 的方法有几种&#xff0c;可以通过以下步骤来实现&#xff1a; 1、使用文本文件作为 banner 在 src/main/resources 目录下创建一个名为 banner.txt 的文件。 编辑这个文件&#xff0c;输入想要显示的文本。确保文本中包含换行符和空格…

Vue 项目中 history 路由模式的使用

在最近帮客户开发的一个项目中&#xff0c;由于项目的特殊性&#xff0c;需要用到 Vue 中的 history路由模式。该模式使用时会涉及到“上传白屏”和“刷新 404 问题”。在帮助客户解决这两个问题的过程中&#xff0c;总结问题的解决方案并记录下来&#xff0c;希望能够保留这篇…

将格内多行文字展开成多格

表格的A列是分类&#xff0c;B列由多行文字组成&#xff0c;即分隔符是换行符。 AB1Account NumberInteraction21Jan 1,2023 - Hello.32Jan 2, 2023 - Good morning. Jan 3, 2023 - Good night. Jan 4, 20 Jan 5, 2023 - Good night. Jan 6, 2023 - Good afternoon.43Jan 1,20…

中霖教育:经济师的十个专业类别怎么选?

经济师一共包含十个专业类别&#xff0c;分别是工商管理、农业经济、财政税收、金融、保险、人力资源管理、旅游经济、运输经济、建筑与房地产经济、知识产权。 经济师选择报考专业时有哪些建议? 1、职业规划是选择专业的首要考虑点。未来的职业发展途径应与所选专业紧密相连…

wifi模组Ai-M62-32S的IO映射和UDP透传测试

wifi模组Ai-M62-32S的IO映射和UDP透传测试 基本IO 映射配网示例开启UDP透传示例复位AT查询wifi是否在线配置DHCP静态IP连接wifi连接UDP开启透传 基本IO 映射 对于wifi模组Ai-62-32S来说其模组 IO 引脚&#xff08;从模组左上角逆时针排序&#xff0c;引脚序号从 1 开始&#x…

python+selenium-UI自动框架之[优化]元素查找和BasePage页面

痛点&#xff1a;在页面查找元素的时候会遇到找不到或者其他无法处理某个字段的情况&#xff0c;又或者想要在输出的log或者report里面显示这个字段名称&#xff0c;这时候加上字段名称就很重要&#xff01; [3]pythonselenium - UI自动框架之封装查找元素https://mp.csdn.net…