数据结构(初阶1.复杂度)

文章目录

一、复杂度概念

二、时间复杂度

  2.1 大O的渐进表示法

    2.2 时间复杂度计算示例

    2.2.1. // 计算Func2的时间复杂度?

    2.2.2.// 计算Func3的时间复杂度?

    2.2.3.// 计算Func4的时间复杂度?

    2.2.4.// 计算strchr的时间复杂度?

     💡 总结

    2.2.5.// 计算BubbleSort (冒泡排序) 的时间复杂度?

    2.2.6.// 计算func5的时间复杂度?

    2.2.7.// 计算阶乘递归Fac的时间复杂度?

三、空间复杂度

  3.1 空间复杂度计算示例

    3.1.1// 计算BubbleSort的空间复杂度?

    3.1.2// 计算阶乘递归Fac的空间复杂度?

四、常见复杂度对比


一、复杂度概念

  • 算法在编写成可执⾏程序后,运⾏时需要耗费时间资源和空间(内存)资源 。因此衡量⼀个算法的好坏,⼀般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。 时间复杂度主要衡量⼀个算法的运⾏快慢,⽽空间复杂度主要衡量⼀个算法运⾏所需要的额外空间。在计算 机发展的早期,计算机的存储容量很⼩。所以对空间复杂度很是在乎。但是经过计算机⾏业的迅速发展,计算机的存储容量已经达到了很⾼的程度。所以我们如今已经不需要再特别关注⼀个算法的空间复杂度。

二、时间复杂度

定义:在计算机科学中,算法的时间复杂度是⼀个函数式T(N),它定量描述了该算法的运⾏时                   间,时间复杂度是衡量程序的时间效率,那么为什么不去计算程序的运⾏时间呢?
  1. 因为程序运⾏时间和编译环境和运⾏机器的配置都有关系,⽐如同⼀个算法程序,⽤⼀个⽼编译器进⾏编译和新编译器编译,在同样机器下运⾏时间不同。
  2. 同⼀个算法程序,⽤⼀个⽼低配置机器和新⾼配置机器,运⾏时间也不同。
  3. 并且时间只能程序写好后测试,不能写程序前通过理论思想计算评估。
那么算法的时间复杂度是⼀个函数式T(N)到底是什么呢?这个T(N)函数式计算了程序的执⾏次数。通过c语⾔编译链接章节学习,我们知道算法程序被编译后⽣成⼆进制指令,程序运⾏,就是cpu执⾏这些编译好的指令。那么我们通过程序代码或者理论思想计算出程序的执⾏次数的函数式T(N),
假设每句指令执⾏时间基本⼀样(实际中有差别,但是微乎其微),那么执⾏次数和运⾏时间就是等⽐正相关,这样也脱离了具体的编译运⾏环境。执⾏次数就可以代表程序时间效率的优劣。⽐如解决⼀个问题的算法a程序T(N) = N,算法b程序T(N) = N^2,那么算法a的效率⼀定优于算法b。

看下面代码 

void Func1(int N)
{int count = 0;for (int i = 0; i < N ; ++ i){for (int j = 0; j < N ; ++ j){++count;}}for (int k = 0; k < 2 * N ; ++ k){++count;}int M = 10;while (M--){++count;}
}
  • 程序时间效率:每条语句运行时间(通过编译环境或者运行环境决定的,存在不确定性)  *  运                             行次数
  • Func1 执⾏的基本操作次数:
             T ( N ) = N 2 + 2 ∗ N + 10
N = 10       N2 = 100    2*N = 20       T(N) = 130
N = 100     N2 = 100    2*N = 200     T(N) = 10210
N = 1000   N2 = 100    2*N = 2000   T(N) = 1002010
通过对N取值分析,对结果影响最⼤的⼀项是 N 2.
实际中我们计算时间复杂度时,计算的也不是程序的精确的执⾏次数,精确执⾏次数计算起来还是很⿇烦的(不同的⼀句程序代码,编译出的指令条数都是不⼀样的),计算出精确的执⾏次数意义也不⼤,因为我么计算时间复杂度只是想⽐较算法程序的增⻓量级,也就是当N不断变⼤时T(N)的差别,上⾯我们已经看到了当N不断变⼤时常数和低阶项对结果的影响很⼩,所以我们只需要计算程序能代表增⻓量级的⼤概执⾏次数,复杂度的表⽰通常使⽤⼤O的渐进表⽰法。

2.1 大O的渐进表示法

⼤O符号(Big O notation):是⽤于描述函数渐进⾏为的数学符号
💡 推导⼤O阶规则
  1.  时间复杂度函数式T(N)中,只保留最⾼阶项,去掉那些低阶项,因为当N不断变⼤时,低阶项对结果影响越来越⼩,当N⽆穷⼤时,就可以忽略不计了。
  2.  如果最⾼阶项存在且不是1,则去除这个项⽬的常数系数,因为当N不断变⼤,这个系数对结果影响越来越⼩,当N⽆穷⼤时,就可以忽略不计了。
  3. T(N) 中如果没有 N 相关的项⽬,只有常数项,⽤常数 1 取代所有加法常数。
    通过以上⽅法,可以得到 Func1 的时间复杂度为: O ( N 2 )
2.2 时间复杂度计算示例
2.2.1. // 计算Func2的时间复杂度?
void Func2(int N)
{int count = 0;for (int k = 0; k < 2 * N ; ++ k){++count;                                  2N}int M = 10;while (M--){++count;                                  10}printf("%d\n", count);
}
  •  Func2执⾏的基本操作次数: F (N) = 2N + 10
  • 根据推导规则第3条得出,Func2的时间复杂度为: O(N)

2.2.2.// 计算Func3的时间复杂度?
void Func3(int N, int M)
{int count = 0;for (int k = 0; k < M; ++ k){++count;                                      M}for (int k = 0; k < N ; ++k){++count;                                      N}printf("%d\n", count);
}
  • Func3执⾏的基本操作次数: F ( N ) = M + N
  • 因此:Func2的时间复杂度为: O ( N )
注意:当  M>>N , O(M);
            当  M>>N , O(M);   

           当  M == N , O(M+N);

2.2.3.// 计算Func4的时间复杂度?
void Func4(int N)
{int count = 0;for (int k = 0; k < 100; ++ k){++count;}printf("%d\n", count);
}
  • Func4执⾏的基本操作次数:F (N) = 100
  • 根据推导规则第1条得出Func2的时间复杂度为: O (1)
注意:这里的 1 不是运行一次,而是代表常数。

2.2.4.// 计算strchr的时间复杂度?
const char * strchr ( const char* str, int character)
{const char* p_begin = s;while (*p_begin != character){if (*p_begin == '\0')return NULL;p_begin++;}return p_begin;
}

T(N)取决于查找的位置

strchr执⾏的基本操作次数:
1)若要查找的字符在字符串第⼀个位置,则:         F ( N ) = 1
2)若要查找的字符在字符串最后的⼀个位置,则: F ( N ) = N
3)若要查找的字符在字符串中间位置,则:            F ( N ) = N /2
因此:strchr的时间复杂度分为:
最好情况: O (1)
最坏情况: O ( N )
平均情况: O ( N/2) --> O ( N )
💡 总结
通过上⾯我们会发现,有些算法的时间复杂度存在最好、平均和最坏情况。
最坏情况:任意输⼊规模的最⼤运⾏次数(上界)
平均情况:任意输⼊规模的期望运⾏次数
最好情况:任意输⼊规模的最⼩运⾏次数(下界)
⼤O的渐进表⽰法在实际中⼀般情况关注的是算法的上界,也就是最坏运⾏情况。
2.2.5.// 计算BubbleSort (冒泡排序) 的时间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)   //数组有序break;}
}

外层循环次数 :    1       2       3       ......    end

内层循环次数 :    N     N-1   N-2     ......     0

BubbleSort执⾏的基本操作次数:
1)若数组有序,则:              F ( N ) = N
2)若数组有序且为降序,则: F ( N) = 1 + 2 + 3+...+ N = N ∗ ( N + 1)/2 -->N2
      因此:BubbleSort的时间复杂度取最差情况为: O ( N 2 )
2.2.6.// 计算func5的时间复杂度?
void func5(int n)
{int cnt = 1;while (cnt < n){cnt *= 2;}
}
当 cnt = 2时,      执⾏次数为1
当 cnt = 4时,      执⾏次数为2
当 cnt = 16时,    执⾏次数为4
若要使该公式不成立,即跳出 while 循环,此时 x 最小为 4
假设执⾏次数为 x ,则 2 x = n
因此执⾏次数: x = log n
因此:func5的时间复杂度取最差情况为: O (log 2 n )
(注意课件中和书籍中 log 2 n log n lg n 的表⽰
当n接近⽆穷⼤时,底数的⼤⼩对结果影响不⼤。因此,⼀般情况下不管底数是多少都可以省略不
写,即可以表⽰为 log n
不同书籍的表⽰⽅式不同,以上写法差别不⼤,我们建议使⽤ log n)
2.2.7.// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{if(0 == N)return 1;return Fac(N-1)*N;
}

                     递归过程: Fac(n) ->  Fac(n-1) ->  Fac(n-2) -> ...  Fac(0) 

单次递归的时间复杂度: O(1)           O(1)            O(1)           ...   O(1)

递归的次数为N;

时间复杂度:单次递归的时间复杂度 * 递归次数:O(1)  * N = O(N)

阶乘递归的时间复杂度为: O (N )

三、空间复杂度

空间复杂度也是⼀个数学表达式,是对⼀个算法在运⾏过程中因为算法的需要额外临时开辟的空间。
空间复杂度不是程序占⽤了多少bytes的空间,因为常规情况每个对象⼤⼩差异不会很⼤,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使⽤⼤O渐进表⽰法。
注意:函数运⾏时所需要的栈空间(存储参数、局部变量、⼀些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运⾏时候显式申请的额外空间来确定

3.1 空间复杂度计算示例

3.1.1// 计算BubbleSort的空间复杂度?

在 2.2.5 中我们计算了 BubbleSort 的时间复杂度,那么空间复杂度又是怎么计算呢?

void BubbleSort(int* a, int n)
{assert(a);  for (size_t end = n; end > 0; --end)  //  (size_t end = n)   申请一次{    int exchange = 0;                     //  (int exchange = 0) 申请一次for (size_t i = 1; i < end; ++i)  //  (size_t i)         申请一次  {if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)   //数组有序break;}
}
函数栈帧在编译期间已经确定好了, 只需要关注函数在运⾏时额外申请的空间。
BubbleSort额外申请的空间有 exchange、  size_t end  、size_t i 等 有限个局部变量,使⽤了常数个额外空间,因此空间复杂度为 O (1)。
3.1.2// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{if(0 == N)return 1;return Fac(N-1)*N;
}
Fac递归调⽤了N次,额外开辟了N个函数栈帧,每个栈帧使⽤了常数个空间
因此空间复杂度为: O ( N )

四、常见复杂度对比

完结~~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3226012.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

华为HCIP Datacom H12-821 卷34

1.单选题 防火墙默认已经创建了一些安全区域,以下哪一个安全区域不是防火墙上默认存在的? A、Trust B、DMZ C、Internet D、Local 正确答案&#xff1a; C 解析&#xff1a; 防火墙默认情况下为我们提供了三个安全区域&#xff0c;分别是 Trust、DMZ和Untrust 2.判断题 …

案例|水上水下一体化测量,为九寨沟精准把脉

​ 九寨沟&#xff0c;被誉为“人间仙境”&#xff0c;其湖群以独特的地理位置和优美的自然景观吸引着世界各地的游客&#xff0c;更是九寨沟生态系统中不可或缺的重要组成部分。因此&#xff0c;精准地掌握湖群的地形数据、水体分布及变化情况&#xff0c;能够揭示水下生态系…

Operator 部署Prometheus

安装说明 kube-prometheus https://prometheus-operator.dev/docs/https://github.com/prometheus-operator/kube-prometheus 该存储库收集 Kubernetes 清单、Grafana仪表板和Prometheus 规则以及文档和脚本&#xff0c;以使用 Prometheus Operator 通过Prometheus提供易于操…

提升困难生学工支持:智慧校园的新功能介绍

智慧校园的学工管理系统内嵌的困难生信息管理功能&#xff0c;是一个综合性的服务平台&#xff0c;专注于精准识别校园内的经济困难学生&#xff0c;并给予他们必要的帮助与关怀&#xff0c;确保每位学生都能在公平的环境中追求学业和个人成长。这一功能通过一系列信息化手段&a…

1Panel 安装常见问题与解决方案指南

安装 参考 1Panel 文档 - 在线安装 部分&#xff0c;这里仅作常见安装失败的问题解析。 常见Q&A 收集自 1Panel微信群&#xff0c;论坛以及GitHub issue Q1. 安装过程中提示 docker 安装失败 [1Panel Log]: … 启动 docker Failed to enable unit: Unit file docker.ser…

【React】基础数据回填--useForm与setFieldsValue详解

相关属性 1.form 2.setFieldsValue 代码 import{Form }from"antd";const Publish =

阿里云通义千问开源两款语音基座模型分别是SenseVoice和CosyVoice

阿里巴巴近期发布了开源语音大模型项目FunAudioLLM&#xff0c;该项目包含了两个核心模型&#xff1a;SenseVoice和CosyVoice。可以精准多语言识别并且进行语音克隆。 SenseVoice&#xff1a;精准多语言识别与情感辨识 SenseVoice主要致力于高精度多语言语音识别、情感辨识和…

CSS技巧专栏:一日一例 1.纯CSS实现 会讨好的热情按钮 特效

题外话: 从今天开始,我准备开设一个新的专栏,专门写 使用CSS实现各种酷炫按钮的方法,本专栏目前准备写40篇左右,大概会完成如下按钮效果: 今天,我来介绍第一个按钮的实现方法:会讨好的热情按钮。为什么我给它起这样的名字呢?你看它像不像一个不停摇尾巴的小黄?当你鼠…

【模块化与包管理】:解锁【Python】编程的高效之道

目录 1.什么是模块&#xff1f; 2. 模块的导入过程 3. 理解命名空间 4. import语句的多种形式 5. 模块的执行与重新导入 6. 包&#xff08;Package&#xff09; 7. sys模块和os模块 sys模块 常用属性 示例&#xff1a;使用sys模块 os模块 常用功能 示例&#xff1…

vue使用 “xlsx-style“: “^0.8.13“ 报错

关于jszip not a constructor报错配置config.js文件后可能还报错的问题&#xff1a; 在node_modules处找到node_modules\xlsx-style\xlsx.js 文件。 将 if(typeof jszip undefined) jszip require(./jszip).JSZip;(应该在xlsx.js文件1339行左右) 替换成 if(typeof jszip und…

二进制安装nexus

今天安装nexus&#xff0c;想看看别人怎么安装的&#xff0c;结果找了一圈&#xff0c;没有一个靠谱的&#xff0c; 有些题目是二进制安装nexus&#xff0c;内容是东家长李家短胡扯&#xff0c;一个字&#xff0c;不要脸&#xff1b; 详细安装步骤如下&#xff0c;一起学习&…

Java 期末速成

其他题 import java.util.*; public class Test {public static void main(String[] args) {Scanner scanner new Scanner(System.in);int arr[] new int[100];int value scanner.nextInt();int s scanner.nextLine(); // 键盘输入多个字符int result 0;System.out.print…

智驭未来:人工智能与目标检测的深度交融

在科技日新月异的今天&#xff0c;人工智能&#xff08;AI&#xff09;如同一股不可阻挡的浪潮&#xff0c;正以前所未有的速度重塑着我们的世界。在众多AI应用领域中&#xff0c;目标检测以其独特的魅力和广泛的应用前景&#xff0c;成为了连接现实与智能世界的桥梁。本文旨在…

LangChain教程:构建基于GPT的应用程序

ChatGPT和GPT-4的成功表明&#xff0c;通过使用强化学习训练的大型语言模型&#xff0c;可以构建可扩展且功能强大的自然语言处理应用程序。 然而&#xff0c;响应的有用性取决于提示信息&#xff0c;这导致用户探索了提示工程领域。此外&#xff0c;大多数现实世界的自然语言…

防火墙实验配置

实验要求 1&#xff0c;DMZ区内的服务器&#xff0c;办公区仅能在办公时间内&#xff08;9&#xff1a;00-18&#xff1a;00&#xff09;可以访问&#xff0c;生产区全天都能访问 2&#xff0c;生产区不允许访问互联网&#xff0c;办公区和游客区允许访问互联网 3&#xff0c;…

echarts——横坐标轴文字过长如何换行

横坐标轴文字过长,想要换行 实现如下效果 具体实现代码如下&#xff1a; axisLabel: {show: true,interval: 0,formatter: function (value) {var ret "";//拼接加\n返回的类目项 var maxLength 4;//每项显示文字个数 var valLength value.length;//X轴类目项…

智慧城市大数据运营中心 IOC:Web GIS 地图应用助力智能决策

利用图扑 HT for Web GIS 技术&#xff0c;智慧城市大数据运营中心 (IOC) 实现动态可视化展示&#xff0c;整合多源数据&#xff0c;提高城市管理和资源分配效率&#xff0c;支持智能决策与实时监控。

【数据结构与算法 经典例题】单值二叉树的判断

&#x1f493; 博客主页&#xff1a;倔强的石头的CSDN主页 &#x1f4dd;Gitee主页&#xff1a;倔强的石头的gitee主页 ⏩ 文章专栏&#xff1a;《数据结构与算法 经典例题》C语言 期待您的关注 目录 一、问题描述 二、解题思路 三、C语言实现代码 一、问题描述 如果二叉树…

Linux 防火墙配置指南:firewalld不同服务管理的应用案例(十个)

&#x1f3e1;作者主页&#xff1a;点击&#xff01; &#x1f427;Linux基础知识(初学)&#xff1a;点击&#xff01; &#x1f427;Linux高级管理专栏&#xff1a;点击&#xff01; &#x1f510;Linux中firewalld防火墙&#xff1a;点击&#xff01; ⏰️创作时间&…

nginx正向代理、反向代理、负载均衡

nginx.conf nginx首要处理静态页面 反向代理 动态请求 全局模块 work processes 1; 设置成服务器内核数的两倍&#xff08;一般不不超过8个超过8个反而会降低性能一般4个 1-2个也可以&#xff09; netstat -antp | grep 80 查端口号 *1、events块&#xff1a;* 配置影响ngi…