58、基于径向基神经网络的曲线拟合(matlab)

1、基于径向基神经网络的曲线拟合简介及原理

1)原理简介

基于径向基神经网络(Radial Basis Function Neural Network, RBFNN)的曲线拟合是一种常用的非线性拟合方法,通过在输入空间中使用径向基函数对数据进行处理,实现对非线性关系的拟合。

RBFNN的基本原理是将输入空间中的数据映射到高维空间中,然后利用线性回归方法对数据进行拟合。在RBFNN中,通常使用高斯函数作为径向基函数,其数学表达式为:

eq?%5CPhi%20%28x%29%3Dexp%28-%5Cfrac%7B%5Cleft%20%5C%7C%20z-c_%7Bi%7D%5Cright%20%5C%7C%5E%7B2%7D%7D%7B2%5Csigma%20_%7Bi%7D%5E%7B2%7D%7D%29

其中,ci​为高斯函数中心点,σi​为高斯函数的标准差。RBFNN的结构包括输入层、隐含层和输出层。输入层接收输入样本,隐含层包括多个径向基函数,输出层进行线性组合输出。

在曲线拟合中,首先需要确定隐含层中的径向基函数的数量和参数,可以通过交叉验证等方法来确定。然后利用训练数据对网络进行训练,通过计算输出与实际值的误差,使用梯度下降等方法来更新网络参数,直到达到一定的训练误差或迭代次数。

通过训练后的RBFNN可以用来进行曲线拟合,即输入一个新的数据点,网络输出对应的预测值。在实际应用中,RBFNN能够较好地拟合非线性数据,具有较高的预测精度和泛化能力。

总的来说,基于径向基神经网络的曲线拟合利用径向基函数对数据进行映射,通过线性回归方法实现对非线性数据的拟合,是一种常用的曲线拟合方法。

2) 径向基神经网络简介

径向基神经网络(Radial Basis Function Neural Network, RBFNN)是一种人工神经网络,它通过在输入空间中使用径向基函数来进行数据处理和模式识别。RBFNN通常由输入层、隐含层和输出层组成,其中隐含层使用径向基函数来处理输入数据。

RBFNN的训练过程通常包括两个阶段:中心点确定和权重确定。在中心点确定阶段,通常使用聚类算法(如k-means算法)来确定隐含层中径向基函数的中心点;在权重确定阶段,通过最小化损失函数(通常是均方误差)来确定隐含层到输出层的权重。

RBFNN在模式识别、函数逼近、时间序列预测等领域有着广泛的应用。它具有记忆能力强、高度非线性、泛化能力强等优点,在一些问题上比传统的前馈神经网络具有更好的性能。

总的来说,径向基神经网络是一种利用径向基函数进行非线性数据映射和处理的人工神经网络,具有良好的泛化能力和逼近能力,在多个领域得到广泛应用。

3)技术方案

使用 NEWRB 函数创建一个径向基网络,该网络可逼近由一组数据点定义的函数。


2、基于径向基神经网络的曲线拟合实现

1)输入数据集

说明:定义 21 个输入 P 和相关目标 T。

代码

X = -1:.1:1;
T = [-.9602 -.5770 -.0729  .3771  .6405  .6600  .4609 ....1336 -.2013 -.4344 -.5000 -.3930 -.1647  .0988 ....3072  .3960  .3449  .1816 -.0312 -.2189 -.3201];
figure(1)
plot(X,T,'+');
title('径向基神经网络');
xlabel('输入向量P');
ylabel('目标向量T');

视图效果

0772f856aa0e42ae9ffedcb8cf845ed5.png

2) 使用径向基网络来实现数据点的拟合

说明:径向基网络具有两个层,分别是径向基神经元的隐藏层和线性神经元的输出层。
隐含层使用的径向基传递函数。

代码

x = -3:.1:3;
a = radbas(x);
figure(2)
plot(x,a)
title('Radial Basis Transfer Function');
xlabel('Input p');
ylabel('Output a');

视图效果

8350108b858a421fae5266888e603ef7.png

3) 创建径向基网络

代码

eg = 0.02; % 和平方误差目标
sc = 1;    % 传播常数
net = newrb(X,T,eg,sc);
%绘制训练集
figure(3)
plot(X,T,'+');
xlabel('Input');X = -1:.01:1;
Y = net(X);hold on;
plot(X,Y);
hold off;
legend({'Target','Output'})

视图效果

8ca9c9080b0e4a4f8c10fa30621a05f2.png

3、 径向基神经元欠叠

1)说明

径向基网络被训练为用目标输出响应特定输入。
因为径向基神经元的分布程度太低,网络需要许多神经元。


创建数据集代码

P = -1:.1:1;
T = [-.9602 -.5770 -.0729  .3771  .6405  .6600  .4609 ....1336 -.2013 -.4344 -.5000 -.3930 -.1647  .0988 ....3072  .3960  .3449  .1816 -.0312 -.2189 -.3201];
plot(P,T,'+r');

视图效果

3b159f6ebb4c42968296508e3186f2ae.png

 2)创建网络和训练网络

说明:函数 NEWRB 可快速创建一个逼近由 P 和 T 定义的函数的径向基网络。
除了训练集和目标,NEWRB 还使用了两个参量,分别为误差平方和目标与分布常数。径向基神经元的分布设置为非常小的数量。

代码

eg = 0.02; %和平方误差目标
sc = .01;  %传播常数
hold on

3)结果显示

说明:将结果绘制在与训练集相同的图上。测试向量显示该函数已过拟合!如果有更高的分布常数,网络可以做得更好。


代码

net = newrb(P,T,eg,sc);
X = -1:.01:1;
Y = net(X);
plot(X,Y);

视图效果

05d5b5d98fcf49479771ee70fda2754a.png

4、 径向基神经元过叠

1)说明

径向基网络被训练为用目标输出响应特定输入。
由于径向基神经元的分布程度太高,每个神经元的响应基本相同,因此无法设计网络。

数据集代码

P = -1:.1:1;
T = [-.9602 -.5770 -.0729  .3771  .6405  .6600  .4609 ....1336 -.2013 -.4344 -.5000 -.3930 -.1647  .0988 ....3072  .3960  .3449  .1816 -.0312 -.2189 -.3201];
plot(P,T,'+r');

 视图效果

2228cd83190f44e2a7aeeb3182fab18a.png

 2)创建网络和训练网络

说明:函数 NEWRB 可快速创建一个逼近由 P 和 T 定义的函数的径向基网络。
除了训练集和目标,NEWRB 还使用了两个参量,分别为误差平方和目标与分布常数。径向基神经元的分布设置为非常大的数量。


代码

eg = 0.02; % 和平方误差目标
sc = 100;  % 传播常数
net = newrb(P,T,eg,sc);

3)结果显示

说明

由于径向基神经元的输入区域有很大的重叠,NEWRB 无法正确设计径向基网络。
所有神经元始终输出 1,因此不能用于产生不同响应。要查看网络在训练集上的表现,请使用原始输入对网络进行仿真。将结果绘制在与训练集相同的图上。

代码

Y = net(P);
hold on;
plot(P,Y);

视图效果

70be3555e18f455b8659513505509c5d.png

5、总结 

在MATLAB中,可以利用径向基神经网络(RBFNN)进行曲线拟合。以下是基于RBFNN的曲线拟合主要步骤的总结:

  1. 准备数据:

    • 准备训练数据集,包括输入特征 �X 和对应的输出标签 �Y。
    • 如果需要对训练数据进行预处理,可以进行数据标准化或归一化等操作。
  2. 创建和训练RBFNN模型:

    • 使用 MATLAB 的 Neural Network Toolbox 创建 RBFNN 模型。
    • 设置 RBFNN 模型的参数,包括隐含层神经元数量、高斯函数的标准差等。
    • 利用训练数据对 RBFNN 模型进行训练,可以使用 MATLAB 的 train 函数。
  3. 模型评估:

    • 使用测试数据对训练好的 RBFNN 模型进行评估,可以计算预测结果与实际结果的 MSE(均方误差)等指标来评估模型性能。
  4. 曲线拟合:

    • 输入待预测的样本数据,使用训练好的 RBFNN 模型进行预测。
    • 通过绘制实际数据点和 RBFNN 预测结果的曲线来展示曲线拟合效果。

下面是一个简单的用 MATLAB 进行曲线拟合的示例代码:

% 准备数据 
X = % 输入特征 
Y = % 输出标签 % 创建和训练RBFNN模型 
net = newrb(X, Y); % 创建RBFNN模型 
net = train(net, X, Y); % 训练模型 % 模型评估Y_predicted = net(X); % 使用模型进行预测 
MSE = mse(Y - Y_predicted); % 计算均方误差% 曲线拟合展示 
plot(X, Y, 'b'); % 绘制原始数据曲线 
hold on plot(X, Y_predicted, 'r--'); % 绘制预测数据曲线 
legend('实际数据', '预测数据');

需要注意的是,在实际应用中,为了获得更好的模型性能,可能需要进行参数调优、交叉验证等操作。通过以上步骤,可以利用基于径向基神经网络的曲线拟合方法在 MATLAB 中进行实现和应用。

6、源代码

代码

%% 基于径向基神经网络的曲线拟合
%使用 NEWRB 函数创建一个径向基网络,该网络可逼近由一组数据点定义的函数。
%% 输入数据集
%定义 21 个输入 P 和相关目标 T。
X = -1:.1:1;
T = [-.9602 -.5770 -.0729  .3771  .6405  .6600  .4609 ....1336 -.2013 -.4344 -.5000 -.3930 -.1647  .0988 ....3072  .3960  .3449  .1816 -.0312 -.2189 -.3201];
figure(1)
plot(X,T,'+');
title('径向基神经网络');
xlabel('输入向量P');
ylabel('目标向量T');
%% 使用径向基网络来实现数据点的拟合
%径向基网络具有两个层,分别是径向基神经元的隐藏层和线性神经元的输出层。
%隐含层使用的径向基传递函数。
x = -3:.1:3;
a = radbas(x);
figure(2)
plot(x,a)
title('Radial Basis Transfer Function');
xlabel('Input p');
ylabel('Output a');
%% 创建径向基网络
eg = 0.02; % 和平方误差目标
sc = 1;    % 传播常数
net = newrb(X,T,eg,sc);
%绘制训练集
figure(3)
plot(X,T,'+');
xlabel('Input');X = -1:.01:1;
Y = net(X);hold on;
plot(X,Y);
hold off;
legend({'Target','Output'})%% 径向基神经元欠叠 
%径向基网络被训练为用目标输出响应特定输入。
%因为径向基神经元的分布程度太低,网络需要许多神经元。
%快速创建一个逼近由 P 和 T 定义的函数的径向基网络
P = -1:.1:1;
T = [-.9602 -.5770 -.0729  .3771  .6405  .6600  .4609 ....1336 -.2013 -.4344 -.5000 -.3930 -.1647  .0988 ....3072  .3960  .3449  .1816 -.0312 -.2189 -.3201];
plot(P,T,'+r');
%函数 NEWRB 可快速创建一个逼近由 P 和 T 定义的函数的径向基网络。
%除了训练集和目标,NEWRB 还使用了两个参量,分别为误差平方和目标与分布常数。径向基神经元的分布设置为非常小的数量。
eg = 0.02; %和平方误差目标
sc = .01;  %传播常数
hold on
%将结果绘制在与训练集相同的图上。测试向量显示该函数已过拟合!如果有更高的分布常数,网络可以做得更好。
net = newrb(P,T,eg,sc);
X = -1:.01:1;
Y = net(X);
plot(X,Y);%% 径向基神经元过叠
%径向基网络被训练为用目标输出响应特定输入。
%由于径向基神经元的分布程度太高,每个神经元的响应基本相同,因此无法设计网络。
P = -1:.1:1;
T = [-.9602 -.5770 -.0729  .3771  .6405  .6600  .4609 ....1336 -.2013 -.4344 -.5000 -.3930 -.1647  .0988 ....3072  .3960  .3449  .1816 -.0312 -.2189 -.3201];
plot(P,T,'+r');
%函数 NEWRB 可快速创建一个逼近由 P 和 T 定义的函数的径向基网络。
%除了训练集和目标,NEWRB 还使用了两个参量,分别为误差平方和目标与分布常数。径向基神经元的分布设置为非常大的数量。
eg = 0.02; % 和平方误差目标
sc = 100;  % 传播常数
net = newrb(P,T,eg,sc);
%由于径向基神经元的输入区域有很大的重叠,NEWRB 无法正确设计径向基网络。
%所有神经元始终输出 1,因此不能用于产生不同响应。要查看网络在训练集上的表现,请使用原始输入对网络进行仿真。将结果绘制在与训练集相同的图上。Y = net(P);
hold on;
plot(P,Y);

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3225242.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

【机器学习】使用决策树分类器预测汽车安全性的研究与分析

文章目录 一、决策树算法简介决策树的结构分类和回归树 (CART)决策树算法术语决策树算法直觉 二、属性选择度量信息增益熵 基尼指数计算分割基尼指数的步骤 三、决策树算法中的过度拟合避免过度拟合的方法 四、导入库和数据可视化探索性数据分析重命名列名查看数据集的总结信息…

仪表板展示|DataEase看中国:2023年中国新能源汽车经济运行情况分析

背景介绍 随着政府机构、企业和个人对环保和可持续发展的高度关注,“新能源汽车”在全球范围内成为了一个热门话题。新能源汽车是指使用非传统燃料(如电能、氢能等)作为动力源的汽车。 在中国市场,新能源汽车产业蓬勃发展&#…

Python29 Tensorflow的基本知识和使用

1. TensorFlow TensorFlow 是一个开源的机器学习框架,由 Google Brain 团队开发。它用于数据流图的计算,尤其擅长深度学习任务。在 TensorFlow 中,数据流图(Data Flow Graph)是其核心概念之一,它定义了计算…

【QT】QComboBox允许输入查询,且不区分大小写

目录 0.简介 1.环境 2.详细代码 3.参考 0.简介 项目需求,原本有一个下拉框,但是条目太多,不好搜索,所以用户要求可以输入查找 修改前 : 修改后: 1.环境 windows11 vs-code qt5.12 2.详细代码 QComboB…

北斗防爆手持终端在化工厂的安全性能分析

北斗防爆手持终端在化工厂中的应用显著提升了安全性能,其卓越的防爆设计、高精度定位与监控功能、实时通信能力以及多功能集成特性,共同构筑了化工厂安全生产的坚实防线,确保了巡检人员与设备在复杂环境下的安全作业与高效管理。 北斗防爆手持…

触摸屏虚拟键盘组件 jQuery Virtual Keyboard使用 自定义键盘

如何在触摸设备上为输入域添加虚拟键盘? 一个插件可以解决这个问题,关键还支持高度自定义(git地址): GitHub - Mottie/Keyboard: Virtual Keyboard using jQuery ~ 官网地址:Virtual Keyboard 使用步骤&…

免费下载工具 -- Free Download Manager(FDM) v6.24.0.5818

软件简介 Free Download Manager (FDM) 是一款免费的功能强大的下载管理软件,适用于多种操作系统,包括 Windows、macOS、Android 和 Linux。这款软件的特色在于它快速、安全且高效的下载能力。它可以下载各种热门网站的影片,支持 HTTP/HTTP…

人工智能算法工程师(中级)课程1-Opencv视觉处理之基本操作与代码详解

大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程1-Opencv视觉处理之基本操作与代码详解。OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。它提供了各种视觉处理函数&am…

电脑虚拟摄像头怎么使用?电脑摄像头可以被虚拟摄像头替代吗?8款推荐!

在数字化日益普及的今天,视频通话和在线会议已成为我们生活和工作中不可或缺的一部分。然而,当我们的电脑没有配备摄像头,或摄像头出现故障时,我们可能会面临一些不便。这时,电脑虚拟摄像头便成为了一个实用的解决方案…

摸鱼大数据——Spark SQL——Spark on Hive部署

1、集成原理 HiveServer2的主要作用: 接收SQL语句,进行语法检查;解析SQL语句;优化;将SQL转变成MapReduce程序,提交到Yarn集群上运行​SparkSQL与Hive集成,实际上是替换掉HiveServer2。是SparkSQL中的HiveSe…

《AIGC:智能创作时代》:AI创作革命来临,你准备好了吗?

想象一下,你正在欣赏一幅精美的画作,惊叹于其细腻的笔触和独特的构图。然而,当你得知这幅作品是由人工智能创作时,你会作何感想?这不再是科幻小说中的场景,而是我们正在经历的现实。 在这个AI技术飞速发展的…

AWS 云安全性:检测 SSH 暴力攻击

由于开源、低成本、可靠性和灵活性等优势,云基础设施主要由基于linux的机器主导,然而,它们也不能幸免于黑客的攻击,从而影响云的安全性。攻击Linux机器最流行的方法之一是通过SSH通道。 什么是 SSH 安全外壳协议(Sec…

Elasticsearch基础(四):Elasticsearch语法与案例介绍

文章目录 Elasticsearch语法与案例介绍 一、Restful API 二、查询语法 1、ES分词器 2、ES查询 2.1、match 2.2、match_phrase 2.3、multi_match 2.4、term 2.5、terms 2.6、fuzzy 2.7、range 2.8、bool Elasticsearch语法与案例介绍 一、Restful API Elastics…

上海亚商投顾:沪指大涨超1% 两市成交额重回7000亿

上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 一.市场情绪 三大指数昨日放量反弹,午后集体涨超1%,深成指一度涨逾2%。消费电子板块全线爆发。 板…

基于vue的可视化大屏2

这个可视化大屏分为四个部分 一个引入代码&#xff0c;引入全局 index.vue. 左边代码centerleft.vue 右边代码centerright.vue 中间代码center.vue 主代码&#xff1a; 这是一段 Vue 框架的代码。 在 <template> 部分&#xff1a; 定义了一个根 div 元素。其中包含一…

免费插件集-illustrator插件-Ai插件-测量简单路径面积和周长

文章目录 1.介绍2.安装3.通过窗口>扩展>知了插件4.功能解释5.总结 1.介绍 本文介绍一款免费插件&#xff0c;加强illustrator使用人员工作效率&#xff0c;进行测量路径面积和周长处理。首先从下载网址下载这款插件 https://download.csdn.net/download/m0_67316550/878…

【C++报错已解决】Invalid Use of ‘void’ Expression

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 文章目录 引言一、问题描述1.1 报错示例1.2 报错分析1.3 解决思路 二、解决方法2.1 方法一&#xff1a;调整函数返回类型方法二…

猎人维修大师免狗版

技术文档摘要 标题&#xff1a; 多功能维修工具集合概述 摘要&#xff1a; 本文档提供了一组多功能维修工具的概述&#xff0c;这些工具旨在为专业技术人员提供便利&#xff0c;以执行设备维修和软件解锁等任务。文档列出了各个工具的主要功能和应用场景。 关键词&#xff1…

机器人伦理分析:从扫地机器人到智能伙伴

我发过一个泡泡&#xff1a;机器人和扫地机器人。 意犹未尽&#xff0c;我觉得这是一个值得讨论下去的话题。或者是未来话题 在科技迅猛发展的今天&#xff0c;机器人已经从简单的执行工具演变为能够执行复杂任务的智能实体。特别是在家庭环境中&#xff0c;扫地机器人已经成为…

C 语言中的联合(Union)的用途是什么?

&#x1f345;关注博主&#x1f397;️ 带你畅游技术世界&#xff0c;不错过每一次成长机会&#xff01; &#x1f4d9;C 语言百万年薪修炼课程 通俗易懂&#xff0c;深入浅出&#xff0c;匠心打磨&#xff0c;死磕细节&#xff0c;6年迭代&#xff0c;看过的人都说好。 文章目…