【自用】【高昆轮概率论与数理统计笔记】2.1 分布函数的概念与性质

不定期更新,前面的章节会在学完后补回来,重新学学概率,当年考研考的数学二,没有概率基础,想自己补补,视频课是高昆轮老师讲的浙大四版概率论教材的视频课,地址:
第一章:https://www.bilibili.com/video/BV154411Z7MA
后续章节:https://www.bilibili.com/video/BV1c4411f7g8

2.1 分布函数的概念与性质

2.1.1 随机变量(了解)

取值会随机而定的量叫作随机变量
比如投篮,投中记为1,投不中记为0:
{ X = 1 } \{X=1\} {X=1}为投中;
{ X = 0 } \{X=0\} {X=0}为投不中。
还有射击射中射不中等……,可以把若干个不同的试验抽象出来,都能写成1,0的形式,1表示成功,0表示失败,把若干种不同古典概型抽象出来,写成同一种结构。
随机变量一般写成大写字母 X , Y , Z X,Y,Z X,Y,Z或者写成希腊字母 ξ , η , γ \xi, \eta ,\gamma ξ,η,γ,引入随机变量,我们就能把古典概型描述成函数的关系 X X X取1,2,…,有了这种函数的关系就可以做积分,做求导的运算,用微积分来研究。
随机变量的引人,使我们能用随机变量来描述各种随机现象,并能利用数学分析的方法对随机试验的结果进行深入广泛的研究和讨论。

2.1.2 分布函数的定义及性质

定义
F ( x ) = P { X ≤ x } , − ∞ < x < + ∞ . F(x)=P\{X \leq x\},-\infty<x<+\infty . F(x)=P{Xx},<x<+∞.
(函数 F ( x ) F(x) F(x)是分布函数,它就是一个概率,它是随机变量 X X X取值不超过实数 x x x这个事件的概率,它的定义域是 x ∈ ( − ∞ , + ∞ ) x\in (-\infty,+\infty) x(,+)

性质(充要条件):
(1)规范性: F ( − ∞ ) = 0 , F ( + ∞ ) = 1 F(-\infty)=0, F(+\infty)=1 F()=0,F(+)=1

【注】

  • F ( − ∞ ) = P { X ⩽ − ∞ } = 不可能事件  P ( ∅ ) = 0 F(-\infty)=P\{X\leqslant-\infty\}\stackrel{\text { 不可能事件 }}{=}P(\emptyset )=0 F()=P{X}= 不可能事件 P()=0,因为任何一个数(实数)都不能比负无穷小;
  • F ( + ∞ ) = P { X ⩽ + ∞ } = 必然事件  P ( Ω ) = 0 F(+\infty)=P\{X\leqslant+\infty\}\stackrel{\text { 必然事件 }}{=}P(\Omega )=0 F(+)=P{X+}= 必然事件 P(Ω)=0,因为任何一个数(实数)都比正无穷小

(2)连续: F ( x ) = F ( x + 0 ) F(x)=F(x+0) F(x)=F(x+0)

【注】所谓右连续就是指该点的右极限等于该点的函数值,分布函数只能保证右连续,左边连续不连续是不一定的,有的左连续,有的左侧不连续。
【注】 F ( x − 0 ) F(x-0) F(x0) F ( x ) F(x) F(x) x x x点的左极限, F ( x + 0 ) F(x+0) F(x+0) F ( x ) F(x) F(x) x x x点的右极限。

(3)单调不减性: ∀ x 1 < x 2 \forall x_{1}<x_{2} x1<x2,都有 F ( x 1 ) ⩽ F ( x 2 ) F(x_{1})\leqslant F(x_{2}) F(x1)F(x2).

【注】如图所示:

2.1.3 利用分布函数求概率

  • P { X ⩽ a } = F ( a ) P\{X \leqslant a\}=F(a) P{Xa}=F(a)
  • P { X < a } = F ( a − 0 ) P\{X<a\}=F(a-0) P{X<a}=F(a0)(左极限)
  • P { X = a } = F ( a ) − F ( a − 0 ) P\{X=a\}=F(a)-F(a-0) P{X=a}=F(a)F(a0)
  • P { a < X ⩽ b } = P { X ⩽ b } − P { X ⩽ a } = F ( b ) − F ( a ) P\{a<X \leqslant b\}=P\{X \leqslant b\}-P\{X \leqslant a\}=F(b)-F(a) P{a<Xb}=P{Xb}P{Xa}=F(b)F(a)

【注】左侧是开的,扣除区间左侧端点 a a a,所以把区间左侧端点包含 a a a的部分减掉,即 X ⩽ a X \leqslant a Xa;右侧是闭的,包括区间右侧端点 b b b,即 X ⩽ b X \leqslant b Xb,然后根据前三个公式代入。

  • P { a ⩽ X < b } = P { X < b } − P { X < a } = F ( b − 0 ) − F ( a − 0 ) P\{a\leqslant X < b\}=P\{X < b\}-P\{X < a\}=F(b-0)-F(a-0) P{aX<b}=P{X<b}P{X<a}=F(b0)F(a0)

【注】左侧是闭的,包括区间左侧端点 a a a,所以把区间左侧端点 a a a的左侧的区间(不包含 a a a X < a X < a X<a减掉;右侧是开的,扣除区间右侧端点 b b b,即 X < b X<b X<b,然后根据前三个公式代入。

  • P { a ⩽ X ⩽ b } = P { X ⩽ b } − P { X < a } = F ( b ) − F ( a − 0 ) P\{a\leqslant X \leqslant b\}=P\{X \leqslant b\}-P\{X < a\}=F(b)-F(a-0) P{aXb}=P{Xb}P{X<a}=F(b)F(a0)

【注】左侧是闭的,包括区间左侧端点 a a a,所以把区间左侧端点 a a a的左侧的区间(不包含 a a a X < a X < a X<a减掉;右侧是闭的,包括区间右侧端点 b b b,即 X ⩽ b X \leqslant b Xb,然后根据前三个公式代入。

  • P { a < X < b } = P { X < b } − P { X ⩽ a } = F ( b − 0 ) − F ( a ) P\{a< X < b\}=P\{X < b\}-P\{X \leqslant a\}=F(b-0)-F(a) P{a<X<b}=P{X<b}P{Xa}=F(b0)F(a)

【注】左侧是开的,扣除区间左侧端点 a a a,所以把区间左侧端点包含 a a a的部分减掉,即 X ⩽ a X \leqslant a Xa;右侧是开的,扣除区间右侧端点 b b b,即 X < b X<b X<b,然后根据前三个公式代入

【总结】如果是求一段区间的概率,假设区间左侧端点为 a a a,区间右侧端点为 b b b,则用分布函数求概率的时候:

  • 如果区间右侧能取到端点(右闭),则被减数为 P { X ⩽ b } = F ( b ) P\{X \leqslant b\}=F(b) P{Xb}=F(b),如果区间右侧不能取到端点(右开),则被减数为 P { X < b } = F ( b − 0 ) P\{X < b\}=F(b-0) P{X<b}=F(b0)
  • 如果区间左侧能取到端点(左闭),则减数为 P { X < a } = F ( a − 0 ) P\{X < a\}=F(a-0) P{X<a}=F(a0),如果区间左侧不能取到端点(左开),则减数为 P { X ⩽ a } = F ( a ) P\{X \leqslant a\}=F(a) P{Xa}=F(a)
    也可以简记为被减数的随机变量范围是否取得等号和区间右侧是否取得等号一致,减数的随机变量范围是否取得等号和区间左侧是否取得等号相反。

【注】在求数a减b的差时,a叫做被减数,b叫做减数。

【2010,4分】设随机变量 X X X的分布函数 F ( x ) = { 0 , x < 0 1 2 , 0 ≤ x < 1 1 − e − x , x ≥ 1 F(x)=\left\{\begin{array}{lr} 0, & x<0 \\ \frac{1}{2}, & 0 \leq x<1 \\ 1-e^{-x}, & x \geq 1 \end{array}\right. F(x)= 0,21,1ex,x<00x<1x1,则 P { X = 1 } = P\{X=1\}= P{X=1}=        .
(A) 0 0 0
(B) 1 2 \frac{1}{2} 21
(C) 1 2 − e − 1 \frac{1}{2}-e^{-1} 21e1
(D) 1 − e − 1 1-e^{-1} 1e1
【答】 P { X = 1 } = F ( 1 ) − F ( 1 − 0 ) = 1 − e − 1 − 1 2 = 1 2 − e − 1 P\{X=1\}=F(1)-F(1-0)=1-e^{-1}-\frac{1}{2}=\frac{1}{2}-e^{-1} P{X=1}=F(1)F(10)=1e121=21e1,故选(C)
【推广】在此题基础上求 P { 0 < X ⩽ 1 } P\{0< X \leqslant 1\} P{0<X1} P { 0 ⩽ X < 1 } P\{0\leqslant X < 1\} P{0X<1} P { 0 ⩽ X ⩽ 1 } P\{0\leqslant X \leqslant 1\} P{0X1} P { 0 < X < 1 } P\{0< X < 1\} P{0<X<1}.
【答】
P { 0 < X ⩽ 1 } = P { X ⩽ 1 } − P { X ⩽ 0 } = F ( 1 ) − F ( 0 ) = 1 − e − 1 − 1 2 = 1 2 − e − 1 P\{0< X \leqslant 1\}=P\{X\leqslant 1\}-P\{X\leqslant 0\}=F(1)-F(0)=1-e^{-1}-\frac{1}{2}=\frac{1}{2}-e^{-1} P{0<X1}=P{X1}P{X0}=F(1)F(0)=1e121=21e1
P { 0 ⩽ X < 1 } = P { X < 1 } − P { X < 0 } = F ( 1 − 0 ) − F ( 0 − 0 ) = 1 2 − 0 = 1 2 P\{0\leqslant X < 1\}=P\{X< 1\}-P\{X< 0\}=F(1-0)-F(0-0)=\frac{1}{2}-0=\frac{1}{2} P{0X<1}=P{X<1}P{X<0}=F(10)F(00)=210=21
P { 0 ⩽ X ⩽ 1 } = P { X ⩽ 1 } − P { X < 0 } = F ( 1 ) − F ( 0 − 0 ) = 1 − e − 1 − 0 = 1 − e − 1 P\{0\leqslant X \leqslant 1\} = P\{X\leqslant 1\}-P\{X< 0\}=F(1)-F(0-0)=1-e^{-1}-0=1-e^{-1} P{0X1}=P{X1}P{X<0}=F(1)F(00)=1e10=1e1
P { 0 < X < 1 } = P { X < 1 } − P { X ⩽ 0 } = F ( 1 − 0 ) − F ( 0 ) = 1 2 − 1 2 = 0 P\{0< X < 1\}=P\{X< 1\}-P\{X\leqslant 0\}=F(1-0)-F(0)=\frac{1}{2}-\frac{1}{2}=0 P{0<X<1}=P{X<1}P{X0}=F(10)F(0)=2121=0


【例1】设 F 1 ( x ) , F 2 ( x ) F_{1}(x),F_{2}(x) F1(x),F2(x)是分布函数,又 a , b a,b a,b是两个正数,且 a + b = 1 a+b=1 a+b=1,证明: F ( x ) = a F 1 ( x ) + b F 2 ( x ) F(x)=a F_{1}(x)+b F_{2}(x) F(x)=aF1(x)+bF2(x)也是一个分布函数。
【分析】一个函数若是分布函数,满足规范性: F ( − ∞ ) = 0 , F ( + ∞ ) = 1 F(-\infty)=0, F(+\infty)=1 F()=0,F(+)=1;右连续 F ( x ) = F ( x + 0 ) F(x)=F(x+0) F(x)=F(x+0);单调不减性 ∀ x 1 < x 2 \forall x_{1}<x_{2} x1<x2,都有 F ( x 1 ) ⩽ F ( x 2 ) F(x_{1})\leqslant F(x_{2}) F(x1)F(x2).
【证】由于 F 1 ( x ) , F 2 ( x ) F_{1}(x),F_{2}(x) F1(x),F2(x)是分布函数,则它们满足分布函数的三个性质。
先证规范性 F ( + ∞ ) = a F 1 ( + ∞ ) + b F 2 ( + ∞ ) = a + b = 1 F(+\infty)=aF_{1}(+\infty)+b F_{2}(+\infty)=a+b=1 F(+)=aF1(+)+bF2(+)=a+b=1
F ( − ∞ ) = a F 1 ( − ∞ ) + b F 2 ( − ∞ ) = 0 + 0 = 0 F(-\infty)=aF_{1}(-\infty)+b F_{2}(-\infty)=0+0=0 F()=aF1()+bF2()=0+0=0,规范性成立。
再证右连续,由于 F 1 ( x ) , F 2 ( x ) F_{1}(x),F_{2}(x) F1(x),F2(x)右连续,则 F ( x ) = a F 1 ( x ) + b F 2 ( x ) F(x)=a F_{1}(x)+b F_{2}(x) F(x)=aF1(x)+bF2(x)也是右连续(见注)。
最后证单调不减性 ∀ x 1 < x 2 \forall x_{1}<x_{2} x1<x2,都有 F 1 ( x 1 ) ⩽ F 1 ( x 2 ) F_{1}(x_{1})\leqslant F_{1}(x_{2}) F1(x1)F1(x2) F 2 ( x 1 ) ⩽ F 2 ( x 2 ) F_{2}(x_{1})\leqslant F_{2}(x_{2}) F2(x1)F2(x2)
由于 a , b a,b a,b是两个正数,则
a F 1 ( x 1 ) ⩽ a F 1 ( x 2 ) aF_{1}(x_{1})\leqslant aF_{1}(x_{2}) aF1(x1)aF1(x2) b F 2 ( x 1 ) ⩽ b F 2 ( x 2 ) bF_{2}(x_{1})\leqslant bF_{2}(x_{2}) bF2(x1)bF2(x2),
F ( x 1 ) = a F 1 ( x 1 ) + b F 2 ( x 1 ) ⩽ a F 1 ( x 2 ) + b F 2 ( x 2 ) = F ( x 2 ) F(x_{1})=a F_{1}(x_{1})+b F_{2}(x_{1})\leqslant a F_{1}(x_{2})+b F_{2}(x_{2})=F(x_{2}) F(x1)=aF1(x1)+bF2(x1)aF1(x2)+bF2(x2)=F(x2),亦即 F ( x 1 ) ⩽ F ( x 2 ) F(x_{1})\leqslant F(x_{2}) F(x1)F(x2).
F ( x ) = a F 1 ( x ) + b F 2 ( x ) F(x)=a F_{1}(x)+b F_{2}(x) F(x)=aF1(x)+bF2(x)也是一个分布函数,证毕。

【注】定理(连续函数的四则运算):设函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)在点 x 0 x_{0} x0处连续,则 f ( x ) ± g ( x ) f(x)\pm g(x) f(x)±g(x) f ( x ) g ( x ) f(x)g(x) f(x)g(x) c f ( x ) cf(x) cf(x) c c c为常数)以及 f ( x ) g ( x ) ( g ( x ) ≠ 0 ) \frac{f(x)}{g(x)}(g(x)\ne 0) g(x)f(x)(g(x)=0)在点 x 0 x_{0} x0处连续。



【例2】(教材第3节例1)设随机变量 X X X的分布律为:

X X X − 1 -1 1 2 2 2 3 3 3
p k p_{k} pk 1 4 \frac{1}{4} 41 1 2 \frac{1}{2} 21 1 4 \frac{1}{4} 41

X X X的分布函数,并求 P { X ⩽ 1 2 } P\{X\leqslant\frac{1}{2}\} P{X21} P { 3 2 < X ⩽ 5 2 } P\{\frac{3}{2}<X\leqslant\frac{5}{2}\} P{23<X25} P { 2 ⩽ X ⩽ 3 } P\{2\leqslant X\leqslant3\} P{2X3}.
【答】由于 F ( x ) = P { X ⩽ x } , x ∈ ( − ∞ , + ∞ ) F(x)=P\{X\leqslant x\},x\in (-\infty, +\infty ) F(x)=P{Xx},x(,+)
x < − 1 x< -1 x<1时, F ( x ) = P { X ⩽ x } = P { ∅ } = 0 F(x)=P\{X\leqslant x\}=P\{\emptyset \}=0 F(x)=P{Xx}=P{}=0

【注1】此时 X X X最小就是 − 1 -1 1,由于 X ⩽ x X\leqslant x Xx,则 X ⩽ x < − 1 X\leqslant x< -1 Xx<1是不可能事件

− 1 ⩽ x < 2 -1\leqslant x< 2 1x<2时, F ( x ) = P { X ⩽ x } = P { X = − 1 } = 1 4 F(x)=P\{X\leqslant x\}=P\{X=-1 \}=\frac{1}{4} F(x)=P{Xx}=P{X=1}=41

【注2】由于 X ⩽ x X\leqslant x Xx,则 X X X x ∈ [ − 1 , 2 ) x\in[-1,2) x[1,2)这个区间上的数小,即区间内部的数可能满足,区间左侧的数也能满足,也就是 X < x < 2 X<x<2 X<x<2。当 X < − 1 X< -1 X<1的时候,根据 x ⩾ − 1 x\geqslant -1 x1则肯定也有 x ⩾ − 1 > X x\geqslant-1> X x1>X;当 − 1 ⩽ X < 2 -1\leqslant X< 2 1X<2的时候,有 − 1 ⩽ X ⩽ x < 2 -1\leqslant X \leqslant x< 2 1Xx<2,两个范围都满足,取并集,则最终 X X X的范围是 X < 2 X<2 X<2,则 X < 2 X<2 X<2内只有 X = − 1 X=-1 X=1

2 ⩽ x < 3 2\leqslant x< 3 2x<3时, F ( x ) = P { X ⩽ x } = P { X = − 1 } + P { X = 2 } = 1 4 + 1 2 = 3 4 F(x)=P\{X\leqslant x\}=P\{X=-1 \}+P\{X=2 \}=\frac{1}{4}+\frac{1}{2}=\frac{3}{4} F(x)=P{Xx}=P{X=1}+P{X=2}=41+21=43

【注3】由于 X ⩽ x X\leqslant x Xx,仿照注2,则 X X X x ∈ [ 2 , 3 ) x\in[2,3) x[2,3)这个区间上的数小,即区间内部的数可能满足,区间左侧的数也能满足,也就是 X < x < 3 X<x<3 X<x<3。当 X < 2 X< 2 X<2的时候,根据 x ⩾ 2 x\geqslant 2 x2则肯定也有 x ⩾ 2 > X x\geqslant2> X x2>X;当 2 ⩽ X < 3 2\leqslant X< 3 2X<3的时候,有 2 ⩽ X ⩽ x < 3 2\leqslant X \leqslant x< 3 2Xx<3,两个范围都满足,取并集,则最终 X X X的范围是 X < 3 X<3 X<3,则 X < 3 X<3 X<3内有 X = − 1 X=-1 X=1 X = 2 X=2 X=2

x ⩾ 3 x\geqslant3 x3时, F ( x ) = P { X ⩽ x } = P { Ω } = 1 F(x)=P\{X\leqslant x\}=P\{\Omega \}=1 F(x)=P{Xx}=P{Ω}=1

【注4】由于 X ⩽ x X\leqslant x Xx,仿照注2,则 X X X x ∈ [ 3 , + ∞ ) x\in[3,+\infty ) x[3,+)这个区间上的数小,也就是 X < x < + ∞ X<x<+\infty X<x<+,当 X < 3 X< 3 X<3的时候,根据 x ⩾ 3 x\geqslant 3 x3则肯定也有 x ⩾ 3 > X x\geqslant 3>X x3>X,当 3 ⩽ X < + ∞ 3\leqslant X< +\infty 3X<+的时候,有 3 ⩽ X ⩽ x < + ∞ 3\leqslant X \leqslant x< +\infty 3Xx<+,两个范围都满足,取并集,则最终 X X X的范围是 X < + ∞ X<+\infty X<+,则 X < + ∞ X<+\infty X<+内有 X = − 1 X=-1 X=1 X = 2 X=2 X=2 X = 3 X=3 X=3,也可以这样理解, X X X的取值肯定小于 + ∞ +\infty +,这是必然事件。

综上所述, X X X的分布函数为 F ( x ) = { 0 , x < − 1 , 1 4 , − 1 ⩽ x < 2 , 3 4 , 2 ⩽ x < 3 , 1 , x ⩾ 3. F(x)=\left\{\begin{array}{l} 0, x<-1, \\ \frac{1}{4},-1 \leqslant x<2, \\ \frac{3}{4}, \quad 2 \leqslant x<3, \\ 1, x \geqslant 3 . \end{array}\right. F(x)= 0,x<1,41,1x<2,43,2x<3,1,x3.

【注5】(1)以后讨论分布函数,必须写成左闭右开 [ a , b ) [a,b) [a,b)的形式(或者说等号随着大于号),这是为了保证分布函数是右连续。
(2)以后针对这种只能取有限个点的随机变量的分布函数求解问题可以直接看满足 X < b X<b X<b的可能的取值求这些随机变量的取值对应的概率值的和即是该区间的分布函数值。

【注6】此分布函数的图像如下:

此图像呈一种阶梯状,这种阶梯状的函数在 − 1 , 2 , 3 -1,2,3 1,2,3点发生了跳跃(跳跃间断点)。

凡是取有限个点的这种随机变量 X X X,它的分布函数都是呈现阶梯状态,反之也成立,取的点就是这些跳跃间断点,并且跳跃高度就是对应该点随机变量取值的概率。

继续解题:

P { X ⩽ 1 2 } = F ( 1 2 ) = 1 4 P\{X\leqslant\frac{1}{2}\}=F\left ( \frac{1}{2} \right ) =\frac{1}{4} P{X21}=F(21)=41
P { 3 2 < X ⩽ 5 2 } = P { X ⩽ 5 2 } − P { X ⩽ 3 2 } = F ( 5 2 ) − F ( 3 2 ) = 3 4 − 1 4 = 1 2 P\{\frac{3}{2}<X\leqslant\frac{5}{2}\}=P\{X\leqslant\frac{5}{2}\}-P\{X\leqslant\frac{3}{2}\}=F\left ( \frac{5}{2} \right )-F\left ( \frac{3}{2} \right )=\frac{3}{4}-\frac{1}{4}=\frac{1}{2} P{23<X25}=P{X25}P{X23}=F(25)F(23)=4341=21
P { 2 ⩽ X ⩽ 3 } = F ( 3 ) − F ( 2 − 0 ) = 1 − 1 4 = 3 4 P\{2\leqslant X\leqslant3\}=F(3)-F(2-0)=1-\frac{1}{4}=\frac{3}{4} P{2X3}=F(3)F(20)=141=43


【例3】(课后作业)一个靶子是半径为2m的圆盘,设击中靶子上任一同心圆盘上的点的概率与该圆盘的面积成正比,并设射击都能击中,以 X X X表示弹着点与圆心的距离,求随机变量 X X X的分布函数。
【答】若 x < 0 x<0 x<0,则 { X ⩽ x } \{X\leqslant x\} {Xx}是不可能事件(因为距离不能为负数),则 F ( x ) = P { X ⩽ x } = 0 F(x)=P\{X\leqslant x\}=0 F(x)=P{Xx}=0

0 ⩽ x < 2 0\leqslant x<2 0x<2(和书中不一样,保持刚才左闭右开的原则),由于击中靶子上任一同心圆盘上的点的概率与该圆盘的面积成正比,则 F ( x ) = P { X ⩽ x } = k π x 2 F(x)=P\{X\leqslant x\}=k\pi x^{2} F(x)=P{Xx}=x2 k k k是某一确定的常数(书中写 k x 2 kx^{2} kx2是将 k π k\pi 视为常数了,一样的),当 x = 1 x=1 x=1时,记 S S S为同心圆的面积,由几何概型公式,有 F ( 1 ) = k π F(1)=k\pi F(1)= P { X ⩽ 1 } = S 半径为 1 的圆 S 圆盘靶子的面积 = π × 1 2 π × 2 2 = 1 4 = k π P\{X\leqslant 1\}=\frac{S_{半径为1的圆}}{S_{圆盘靶子的面积}}=\frac{\pi \times 1^{2}}{\pi \times 2^{2}}=\frac{1}{4}=k\pi P{X1}=S圆盘靶子的面积S半径为1的圆=π×22π×12=41=,所以 k π = 1 4 k\pi=\frac{1}{4} =41,故 F ( x ) = x 2 4 F(x)=\frac{x^{2}}{4} F(x)=4x2

x ⩾ 2 x\geqslant 2 x2,则 { X ⩽ x } = { X ⩽ x < + ∞ } \{X\leqslant x\}=\{X\leqslant x<+\infty\} {Xx}={Xx<+}是必然事件,则 F ( x ) = P { X ⩽ x } = 1 F(x)=P\{X\leqslant x\}=1 F(x)=P{Xx}=1,综上所述, X X X的分布函数为
F ( x ) = { 0 , x < 0 , x 2 4 , 0 ⩽ x < 2 , 1 , x ⩾ 2. F(x)=\left\{\begin{array}{lr} 0, & x<0, \\ \frac{x^{2}}{4}, & 0 \leqslant x<2, \\ 1, & x \geqslant 2 . \end{array}\right. F(x)= 0,4x2,1,x<0,0x<2,x2.
按照高昆轮老师的要求,它的分布函数图像为:

【注】这种实际上叫连续型随机变量,它不是取有限个点的分布,所以不能通过跳跃间断点的跳跃值判断每个点的概率。它的分布函数可以写成变上限的反常积分 F ( x ) = ∫ − ∞ x f ( t ) d t F(x)=\int_{-\infty}^{x} f(t) \mathrm{d} t F(x)=xf(t)dt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3224749.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

类似评论、省市区这种具有层次结构的数据表怎么设计?

业务功能模块 评论、回复模块省市区表 设置一个给每个数据设置一个parent_id 例如&#xff1a; 某个视频下a写了条评论&#xff0c;那a的parent_id就是0;b回复了a&#xff0c;那b的parent_id就是a的id;c回复了b&#xff0c;那c的parent_id就是b的id; 这样&#xff0c;所有评论…

全终端自动化测试框架wyTest

突然有一些觉悟&#xff0c;程序猿不能只会吭哧吭哧的低头做事&#xff0c;应该学会怎么去展示自己&#xff0c;怎么去宣传自己&#xff0c;怎么把自己想做的事表述清楚。 于是&#xff0c;这两天一直在整理自己的作品&#xff0c;也为接下来的找工作多做点准备。接下来…

leetcode--从中序与后序遍历序列构造二叉树

leeocode地址&#xff1a;从中序与后序遍历序列构造二叉树 给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder 是二叉树的中序遍历&#xff0c; postorder 是同一棵树的后序遍历&#xff0c;请你构造并返回这颗 二叉树 。 示例 1: 输入&#xff1a;inorder …

三级_网络技术_12_路由设计技术基础

1.R1、R2是一个自治系统中采用RIP路由协议的两个相邻路由器&#xff0c;R1的路由表如下图(a)所示&#xff0c;当R1收到R2发送的如下图(b)的(V.D)报文后&#xff0c;R1更新的4个路由表项中距离值从上到下依次为0、3、3、4 那么&#xff0c;①②③④可能的取值依次为()。 0、4、…

Git命令常规操作

目录 常用操作示意图 文件的状态变化周期 1. 创建文件 2. 修改原有文件 3. 删除原有文件 没有添加到暂存区的数据直接 rm 删除即可&#xff1a; 对于添加到暂存区的数据 文件或目录&#xff1a; 4. 重命名暂存区数据 5. 查看历史记录 6. 还原历史数据 恢复过程的原…

[安洵杯 2019]easy_serialize_php

源码&#xff1a; <?php$function $_GET[f];function filter($img){$filter_arr array(php,flag,php5,php4,fl1g);$filter /.implode(|,$filter_arr)./i;return preg_replace($filter,,$img); }if($_SESSION){unset($_SESSION); }$_SESSION["user"] guest; …

240709_昇思学习打卡-Day21-文本解码原理--以MindNLP为例

240709_昇思学习打卡-Day21-文本解码原理–以MindNLP为例 今天做根据前文预测下一个单词&#xff0c;仅作简单记录及注释。 一个文本序列的概率分布可以分解为每个词基于其上文的条件概率的乘积 &#x1d44a;_0:初始上下文单词序列&#x1d447;: 时间步当生成EOS标签时&a…

HybridCLR + Addressable 热更新篇(一)

目录 前言一、HybridCLR 和 Addressable 是什么&#xff1f;1. HybridCLR2. Addressable 二、使用步骤1.HybridCLR导入2.HybridCLR配置3.Addressable导入4.Addressable配置 前言 随着移动互联网和游戏行业的快速发展&#xff0c;热更新技术变得越来越重要。热更新能够在不重新…

解决树形表格 第一列中文字没有对齐

二级分类与一级分类的文字没有对齐 <el-table:data"templateStore.hangyeList"style"width: 100%"row-key"id":tree-props"{ children: subData, hasChildren: hasChildren }" ><el-table-column prop"industryCode&quo…

金蝶部署常见问题解决

金蝶部署常见问题解决 金蝶版本&#xff1a; Apusic Application Server Enterprise Edition 9.0 SP8 kbc build 202312041121 报错信息&#xff1a; 与金蝶官方人员沟通&#xff0c;发现lib包版本太低&#xff0c;升级后可正常使用。替换lib包后重启服务。 下载lib: 链接: …

中职网络安全B模块渗透测试server2003

通过本地PC中渗透测试平台Kali对服务器场景Windows进⾏系统服务及版本扫描渗透测 试&#xff0c;并将该操作显示结果中Telnet服务对应的端⼝号作为FLAG提交 使用nmap扫描发现目标靶机开放端口232疑似telnet直接进行连接测试成功 Flag&#xff1a;232 通过本地PC中渗透测试平台…

LLM应用构建前的非结构化数据处理(三)文档表格的提取

1.学习内容 本节次学习内容来自于吴恩达老师的Preprocessing Unstructured Data for LLM Applications课程&#xff0c;因涉及到非结构化数据的相关处理&#xff0c;遂做学习整理。 本节主要学习pdf中的表格数据处理 2.环境准备 和之前一样&#xff0c;可以参考LLM应用构建前…

【结构性型模式-适配器模式】

定义 将一个类的接口转换成客户希望的另外一个接口&#xff0c;使得原本由于接口不兼容而不能一起工作的那些类能一起工作。 适配器模式分为类适配器模式和对象适配器模式&#xff0c;前者类之间的耦合度比后者高&#xff0c;且要求程序员了解现有组件库中的相关组件的内部结…

TAGE predictor

参考文档&#xff1a;分支预测算法&#xff08;一&#xff09;&#xff1a;TAGE|SunnyChen的小窝 TAGE的基础概念 TAGE是现今最经典的分支预测算法&#xff0c;TAGE及其后续的变体都是当今高性能微处理器的分支预测算法基础。因此&#xff0c;要聊分支预测算法的话题必定绕不开…

C语言编程4:复合赋值,递增递减运算符,局部变量与全局变量,本地变量,转义字符

一篇文章带你玩转C语言基础语法4&#xff1a;复合赋值&#xff0c;递增递减运算符&#xff0c;局部变量与全局变量&#xff0c;本地变量&#xff0c;转义字符 一、复合赋值&#x1f33f; 1.1&#x1f4a0;定义 赋值就是给任意一个变量或者常量赋一个值&#xff0c;这个值可以…

0基础学会在亚马逊云科技AWS上搭建生成式AI云原生Serverless问答QA机器人(含代码和步骤)

小李哥今天带大家继续学习在国际主流云计算平台亚马逊云科技AWS上开发生成式AI软件应用方案。上一篇文章我们为大家介绍了&#xff0c;如何在亚马逊云科技上利用Amazon SageMaker搭建、部署和测试开源模型Llama 7B。下面我将会带大家探索如何搭建高扩展性、高可用的完全托管云原…

在亚马逊云科技AWS上利用SageMaker机器学习模型平台搭建生成式AI应用(附Llama大模型部署和测试代码)

项目简介&#xff1a; 接下来&#xff0c;小李哥将会每天介绍一个基于亚马逊云科技AWS云计算平台的全球前沿AI技术解决方案&#xff0c;帮助大家快速了解国际上最热门的云计算平台亚马逊云科技AWS AI最佳实践&#xff0c;并应用到自己的日常工作里。本次介绍的是如何在Amazon …

VBA实现Excel的数据透视表

前言 本节会介绍通过VBA的PivotCaches.Create方法实现Excel创建新的数据透视表、修改原有的数据透视表的数据源以及刷新数据透视表内容。 本节测试内容以下表信息为例 1、创建数据透视表 语法&#xff1a;PivotCaches.Create(SourceType, [SourceData], [Version]) 说明&am…

C语言程序题(一)

一.三个整数从大到小输出 首先做这个题目需要知道理清排序的思路&#xff0c;通过比较三个整数的值&#xff0c;使之从大到小输出。解这道题有很多方法我就总结了两种方法&#xff1a;一是通过中间变量比较和交换&#xff0c;二是可以用冒泡排序法&#xff08;虽然三个数字排序…

【重大消息】报告称OpenAI的产品可经由微软的服务提供给中国客户

尽管OpenAI正在采取措施限制中国用户访问其平台&#xff0c;但一份最新报告称&#xff0c;中国用户仍可通过微软的Azure云计算平台访问该公司的产品。微软和OpenAI有着密切的合作关系&#xff0c;前者通过人工智能功能获得了独家产品访问权以拓展企业计算。最新的报道来自《The…