【work】AI八股-神经网络相关

Deep-Learning-Interview-Book/docs/深度学习.md at master · amusi/Deep-Learning-Interview-Book · GitHub

 网上相关总结:

小菜鸡写一写基础深度学习的问题(复制大佬的,自己复习用) - 知乎 (zhihu.com)

CV面试问题准备持续更新贴 - 知乎 (zhihu.com)

Epoch

  • Epoch 是指完成一次完整的数据集训练的过程。
  • 比如,有一个数据集有1000个样本,当网络用这些样本训练一次后,这就是一个epoch。

Iteration

  • Iteration 是指在一个epoch中,使用一个batch进行训练的次数。
  • 如果你的数据集有1000个样本,batch size是100,那么一个epoch就会有10次iteration(1000/100=10)。

Batch Size

  • Batch Size 是指每次iteration中用于训练的样本数量。
  • 如果你的batch size是100,每次训练就使用100个样本。

反向传播(BP)推导

假设我们有一个简单的三层神经网络(输入层、隐藏层和输出层):

  1. 输入层: xxx
  2. 隐藏层: hhh
  3. 输出层: yyy

前向传播

  1. 输入到隐藏层: h=f(Wxhx+bh)h = f(W_{xh} x + b_h)h=f(Wxh​x+bh​) 其中 WxhW_{xh}Wxh​ 是输入到隐藏层的权重矩阵,bhb_hbh​ 是隐藏层的偏置向量,fff 是激活函数。

  2. 隐藏层到输出层: y^=g(Whyh+by)\hat{y} = g(W_{hy} h + b_y)y^​=g(Why​h+by​) 其中 WhyW_{hy}Why​ 是隐藏层到输出层的权重矩阵,byb_yby​ 是输出层的偏置向量,ggg 是输出层的激活函数,通常在分类问题中是softmax函数。

损失函数

假设我们使用均方误差损失函数:

其中 yyy 是实际输出,y^\hat{y}y^​ 是预测输出。

反向传播

我们需要计算损失 LLL 对每个权重和偏置的梯度,然后更新这些参数。我们从输出层开始,逐层向后推导。

  1. 输出层梯度:

  2. 隐藏层到输出层权重梯度:

  3. 隐藏层到输出层偏置梯度:

  4. 隐藏层误差:

  5. 输入层到隐藏层权重梯度:

  6. 输入层到隐藏层偏置梯度:

参数更新

使用梯度下降法更新权重和偏置:

其中 η 是学习率。

 深度神经网络(DNN)反向传播算法(BP) - 刘建平Pinard - 博客园 (cnblogs.com)

感受野计算

如何计算感受野(Receptive Field)——原理 - 知乎 (zhihu.com)

池化 

1. 池化的作用

池化的主要作用有两个:

  • 降低计算复杂度:通过减少特征图的尺寸,减少后续卷积层和全连接层的计算量。
  • 减小过拟合:通过降低特征图的分辨率,可以使模型更具鲁棒性,对输入数据的小变化不那么敏感。
2. 池化类型

池化操作通常有两种类型:

  • 最大池化(Max Pooling):从池化窗口中选择最大值。
  • 平均池化(Average Pooling):从池化窗口中选择平均值。

 池化(Pooling)的种类与具体用法——基于Pytorch-CSDN博客

一图读懂-神经网络14种池化Pooling原理和可视化(MAX,AVE,SUM,MIX,SOFT,ROI,CROW,RMAC )_图池化-CSDN博客

卷积神经网络(CNN)反向传播算法 - 刘建平Pinard - 博客园 (cnblogs.com)

Sobel边缘检测

是图像处理中常用的技术,它使用卷积核(滤波器)来突出图像中的边缘。Sobel算子通过计算图像灰度值的梯度来检测边缘。

1. Sobel算子

Sobel算子有两个卷积核,一个用于检测水平方向的边缘,另一个用于检测垂直方向的边缘。

水平Sobel卷积核(Gx)
 

diff

复制代码

-1 0 1 -2 0 2 -1 0 1

垂直Sobel卷积核(Gy)
 

diff

复制代码

-1 -2 -1 0 0 0 1 2 1

2. Sobel卷积操作

通过将这两个卷积核分别与图像进行卷积操作,可以得到图像在水平方向和垂直方向上的梯度图。

卷积计算过程

假设有一个3x3的图像块:

 

css

复制代码

a b c d e f g h i

水平方向的梯度计算(Gx):

 

css

复制代码

Gx = (c + 2f + i) - (a + 2d + g)

垂直方向的梯度计算(Gy):

 

css

复制代码

Gy = (g + 2h + i) - (a + 2b + c)

3. 组合梯度

最终的梯度强度可以通过组合Gx和Gy计算得到:

 

scss

复制代码

G = sqrt(Gx^2 + Gy^2)

梯度计算

通过这些卷积核,我们可以计算图像在水平方向和垂直方向的梯度。梯度表示图像灰度值的变化速率,变化速率大的地方就是边缘。具体来说:

  • 水平方向梯度(Gx):表示图像从左到右的变化。如果有明显的水平边缘,Gx会有大的值。
  • 垂直方向梯度(Gy):表示图像从上到下的变化。如果有明显的垂直边缘,Gy会有大的值。

4. 组合梯度

最终,通过组合水平方向和垂直方向的梯度(通常使用欧几里得距离),我们可以得到图像的梯度强度:

计算力(flops)和参数(parameters)数量

(31 封私信 / 80 条消息) CNN 模型所需的计算力(flops)和参数(parameters)数量是怎么计算的? - 知乎 (zhihu.com)

参数共享的卷积环节

不可导的激活函数如何处理

BN

BatchNormalization、LayerNormalization、InstanceNorm、GroupNorm、SwitchableNorm总结_四维layernormal-CSDN博客

Batch Normalization原理与实战 - 知乎 (zhihu.com)

Normalization操作我们虽然缓解了ICS问题,让每一层网络的输入数据分布都变得稳定,但却导致了数据表达能力的缺失。BN又引入了两个可学习(learnable)的参数 𝛾 与 𝛽 。这两个参数的引入是为了恢复数据本身的表达能力,对规范化后的数据进行线性变换 

重点最后一句

感受野计算 

卷积神经网络物体检测之感受野大小计算 - machineLearning - 博客园 (cnblogs.com)

卷积神经网络的感受野 - 知乎 (zhihu.com)

资源 | 从ReLU到Sinc,26种神经网络激活函数可视化 (qq.com)

非线性激活函数的线性区域

从 SGD 到 Adam —— 深度学习优化算法概览(一) - 知乎 (zhihu.com)

一个框架看懂优化算法之异同 SGD/AdaGrad/Adam - 知乎 (zhihu.com)

指数移动平均公式

EMA指数滑动平均(Exponential Moving Average)-CSDN博客

动量梯度下降法(Momentum)

Adagrad

RMSprop

Adam

Adam那么棒,为什么还对SGD念念不忘 (2)—— Adam的两宗罪 - 知乎 (zhihu.com)

dropout

深度学习-Dropout详解_深度学习dropout-CSDN博客

Dropout的深入理解(基础介绍、模型描述、原理深入、代码实现以及变种)-CSDN博客

一文看尽12种Dropout及其变体-腾讯云开发者社区-腾讯云 (tencent.com)

Pytorch——dropout的理解和使用 - Circle_Wang - 博客园 (cnblogs.com)

1x1卷积 

 (31 封私信 / 80 条消息) 卷积神经网络中用1*1 卷积有什么作用或者好处呢? - 知乎 (zhihu.com)

深度学习笔记(六):1x1卷积核的作用归纳和实例分析_1x1卷积降维-CSDN博客

AlexNet网络结构详解(含各层维度大小计算过程)与PyTorch实现-CSDN博客

深度学习——VGG16模型详解-CSDN博客

3乘3卷积代替5乘5卷积

经典卷积神经网络算法(4):GoogLeNet - 奥辰 - 博客园 (cnblogs.com)

1x1卷积降维再接3x3卷积

resnet

两种ResNet设计

channel不同怎么相加

通过卷积调整

ResNet解析-CSDN博客

(31 封私信 / 80 条消息) resnet(残差网络)的F(x)究竟长什么样子? - 知乎 (zhihu.com)

(31 封私信 / 80 条消息) Resnet到底在解决一个什么问题呢? - 知乎 (zhihu.com)

残差连接使梯度稳定

ResNet中的恒等映射是一种直接将输入添加到输出的操作方式,确保了信息和梯度可以稳定地传递。它通过保持梯度的稳定性,防止了梯度消失和爆炸问题,从而使得训练非常深的网络成为可能。

(31 封私信 / 80 条消息) ResNet为什么不用Dropout? - 知乎 (zhihu.com)

人工智能 - [ResNet系] 002 ResNet-v2 - G时区@深度学习 - SegmentFault 思否

DenseNet详解_densenet网络-CSDN博客

yolo系列

YOLO系列算法全家桶——YOLOv1-YOLOv9详细介绍 !!-CSDN博客

 【YOLO系列】YOLOv1论文超详细解读(翻译 +学习笔记)_yolo论文-CSDN博客

YOLO系列算法精讲:从yolov1至yolov8的进阶之路(2万字超全整理)-CSDN博客

NMS

v2引入anchor

分割

计算机视觉—浅谈语义分割、实例分割及全景分割任务 (深度学习/图像处理/计算机视觉)_全景分割和实例分割-CSDN博客

【计算机视觉】最全语义分割模型总结(从FCN到deeplabv3+)-CSDN博客

目标检测与YOLO(2) + 语义分割(FCN)_yolo模型和fcn-CSDN博客

【yolov8系列】yolov8的目标检测、实例分割、关节点估计的原理解析-CSDN博客

yolo实现实例分割和关键点预测,都是在head部分增加新的检测头实现

Bounding-box regression详解(边框回归)_bbox regression-CSDN博客

反卷积(Deconvolution)、上采样(UNSampling)与上池化(UnPooling)_反卷积和上采样-CSDN博客

形象解释:

反卷积(Transposed conv deconv)实现原理(通俗易懂)-CSDN博客

对深度可分离卷积、分组卷积、扩张卷积、转置卷积(反卷积)的理解-CSDN博客

ShuffleNetV2:轻量级CNN网络中的桂冠 - 知乎 (zhihu.com)

轻量级神经网络“巡礼”(一)—— ShuffleNetV2 - 知乎 (zhihu.com)

(31 封私信 / 80 条消息) 怎么选取训练神经网络时的Batch size? - 知乎 (zhihu.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3223705.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

昇思25天学习打卡营第21天|LSTM+CRF序列标注

1. 学习内容复盘 概述 序列标注指给定输入序列,给序列中每个Token进行标注标签的过程。序列标注问题通常用于从文本中进行信息抽取,包括分词(Word Segmentation)、词性标注(Position Tagging)、命名实体识别(Named Entity Recognition, NER)等。以命名…

Linux|背景 环境搭建

目录 一、简述Linux发展史 1.1计算机的诞生 1.2操作系统的诞生 1.3Linux操作系统开源 1.4Linux发行版本 二、搭建Linux环境 三、使用shell远程登入到Linux 一、简述Linux发展史 可能大家未听说过Linux,或者只知道它是一个搭配在计算机上的操作系统&#xff0…

【刷题汇总 -- 求最小公倍数、数组中的最长连续子序列、字母收集】

C日常刷题积累 今日刷题汇总 - day0081、求最小公倍数1.1、题目1.2、思路1.3、程序实现 -- 穷举法1.2、程序实现 -- 辗转相除法 2、数组中的最长连续子序列2.1、题目2.2、思路2.3、程序实现 3、字母收集3.1、题目3.2、思路3.3、程序实现 4、题目链接 今日刷题汇总 - day008 1、…

02day-C++学习(const 指针与引用的关系 inline nullptr)

02day-C学习 1. 使用const注意事项 注意事项 • 可以引⽤⼀个const对象,但是必须⽤const引⽤。const引⽤也可以引⽤普通对象,因为对象的访 问权限在引⽤过程中可以缩⼩,但是不能放⼤。 • 不需要注意的是类似 int& rb a3; double d 1…

Mybatis Plus 3.X版本的insert填充自增id的IdType.ID_WORKER策略源码分析

总结/朱季谦 某天同事突然问我,你知道Mybatis Plus的insert方法,插入数据后自增id是如何自增的吗? 我愣了一下,脑海里只想到,当在POJO类的id设置一个自增策略后,例如TableId(value "id",type …

单对以太网连接器多场景应用

单对以太网连接器应用场景概述 单对以太网(Single Pair Ethernet,简称SPE)作为一种新兴的以太网技术,以其独特的优势在多个领域得到了广泛的应用。SPE通过单对电缆进行数据传输,支持高速数据传输,同时还能…

【python基础】—入门函数print()的参数解析及使用场景

文章目录 一、print()函数二、区隔符—sep三、结束符号—end四、内容写入文件—file五、缓冲输出设置—flush 一、print()函数 功能 print()函数就是把一个或多个对象转换为其文本表达式形式,然后发送给标准输出流或者类似的文件流。 语法 print(value, …, sep’ …

一行代码,开发项目使用阿里巴巴图标-暂存库

减少项目内存,适用于一切项目。防止你使用线上官网的图标,官网更新后,你项目中的图标也消失不能用。此外微信小程序代码上线2M,很实用。 把图标存在阿里巴巴图标库 如下图: 可以在这新建项目并上传项目需要的图标 …

移动公厕有无人显示屏为何多采用RS485、IO信号通讯方式

在户外活动、临时集会或是应急情况下,移动公厕作为解决人们生理需求的重要设施,发挥着不可替代的作用。然而,随着人口密度的增加和对公共卫生要求的提高,如何确保移动公厕的高效利用和良好维护,成为了组织者和管理者面…

《大语言模型的临床和外科应用:系统综述》

这篇题为《大语言模型的临床和外科应用:系统综述》的文章对大语言模型(LLM)目前在临床和外科环境中的应用情况进行了全面评估。 大语言模型(LLM)是一种先进的人工智能系统,可以理解和生成类似人类的文本。…

突破传统,实时语音技术的革命。Livekit 开源代理框架来袭

🚀 突破传统,实时语音技术的革命!Livekit 开源代理框架来袭! 在数字化时代,实时通信已成为我们日常生活的一部分。但你是否曾想象过,一个能够轻松处理音视频流的代理框架,会如何改变我们的沟通方式?今天,我们就来一探究竟! 🌟 什么是 Livekit 代理框架? Live…

比赛获奖的武林秘籍:05 电子计算机类比赛国奖队伍技术如何分工和学习内容

比赛获奖的武林秘籍:05 电子计算机类比赛国奖队伍技术如何分工和学习内容 摘要 本文主要介绍了在电子计算机类比赛中技术层面上的团队分工和需要学习的内容,分为了嵌入式硬件、嵌入式软件、视觉图像处理、机械、上位机软件开发和数据分析等六个方向&am…

iPhone短信被拉黑了怎么恢复?4步快速移除黑名单

在日常使用iPhone的过程中,可能会因为误操作或其他原因将某些联系人拉入黑名单,导致无法接收他们发送的短信。那么,iPhone短信被拉黑了怎么恢复? 其实,只需要简单的4步操作,就能快速将联系人移出黑名单&am…

【Java 的四大引用详解】

首先分别介绍一下这几种引用 强引用: 只要能通过GC ROOT根对象引用链找到就不会被垃圾回收器回收,当所有的GC Root都不通过强引用引用该对象时,才能被垃圾回收器回收。 软引用(SoftReference): 当只有软引…

网站更新改版了

✅作者简介:大家好,我是Leo,热爱Java后端开发者,一个想要与大家共同进步的男人😉😉 🍎个人主页:Leo的博客 💞当前专栏:Leo杂谈 ✨特色专栏:MySQL学…

JVM原理(二四):JVM虚拟机锁优化

高效并发是从JDK 5升级到JDK 6后一项重要的改进项,HotSpot虛 拟机开发团队在这个版本上花费了大量的资源去实现各种锁优化技术,如适应性自旋( Adaptive Spinning)、锁消除( Lock Elimination)、锁膨胀(Lock Coarsening)、轻量级锁(Lightweight Locking)、…

Websocket 替代方案:如何使用 Firestore 监听实时事件

大家好,我是CodeQi! 一位热衷于技术分享的码仔。 ​在现代 Web 开发中,实时更新功能对于许多应用程序(如聊天应用、协作工具和在线游戏)都是必不可少的。虽然 WebSocket 是一种常用的实时通信技术,但 Google 的 Firestore 也提供了一种强大的替代方案,使得实时监听变得…

AdaBoost集成学习算法理论解读以及公式为什么这么设计?

本文致力于阐述AdaBoost基本步骤涉及的每一个公式和公式为什么这么设计。 AdaBoost集成学习算法基本上遵从Boosting集成学习思想,通过不断迭代更新训练样本集的样本权重分布获得一组性能互补的弱学习器,然后通过加权投票等方式将这些弱学习器集成起来得到…

解析MySQL的数据类型:理解每种类型及其应用

MySQL是一种流行的关系型数据库管理系统,被广泛应用于Web应用开发中。在数据库设计的过程中,选择合适的数据类型至关重要,因为它不仅影响存储效率和数据完整性,还影响数据库操作的性能和查询速度。本文将详细介绍MySQL支持的各种数…

飞跃边界,尽在掌握 —— Jump Desktop 8 for Mac,远程工作新体验!

Jump Desktop 8 for Mac 是一款强大的远程桌面控制软件,专为追求高效工作与生活平衡的用户设计。它允许您轻松地从Mac设备上远程访问和控制另一台电脑或服务器,无论是跨房间、跨城市还是跨国界,都能实现无缝连接,仿佛操作就在眼前…