《大语言模型的临床和外科应用:系统综述》

这篇题为《大语言模型的临床和外科应用:系统综述》的文章对大语言模型(LLM)目前在临床和外科环境中的应用情况进行了全面评估。

大语言模型(LLM)是一种先进的人工智能系统,可以理解和生成类似人类的文本。这些模型,特别是那些利用生成式预训练转换模型(GPT)架构的模型,在包括医疗在内的各个领域都显示出了巨大的应用前景。大语言模型可以通过从庞大的数据集中学习,来处理和生成文本,使其能够预测和构建适切情景的应答。

该系统综述遵循系统综述和荟萃分析优先报告条目(PRISMA)指南,检索了六个数据库,以确定重点关注大语言模型的临床和外科应用的相关文章。该综述纳入了2023年以来的研究,共有34篇文章符合入选标准。这些文章包括14篇原研文章、7篇系统综述、8篇非系统综述、4封致编辑的信和1篇访谈。这些研究涵盖了广泛的医学专科,包括骨科、耳鼻喉科、头颈外科和整形外科。

大语言模型已有效地应用于临床环境,以提高诊断准确性和优化治疗方案。它们还通过解释复杂的医疗数据,在拓展医护人员的知识方面发挥了重要作用。这包括根据实验室检查结果和影像学检查结果提供见解,这有助于做出明智的临床决策。大语言模型在临床环境中的常见应用包括:

●诊断和鉴别诊断:大语言模型有助于诊断病情并产生鉴别诊断。

●治疗指导:为治疗方案和进一步的医疗检查提供建议。

●知识扩展与强化:通过解释实验室和影像检查结果来扩展与强化医生的知识。

●患者分诊和管理任务:简化患者管理和管理流程。

在外科手术环境中,大语言模型有助于更好地规划和执行手术。他们通过提供最佳实践和潜在的术中挑战的指导来帮助外科医生。此外,大语言模型可帮助维护易于理解的手术记录,确保手术治疗连续过程中的所有方面都被记录下来。在外科环境中,发现大语言模型可用于:

●医疗文书:协助完成准确而完整的手术过程记录。

●手术规划:帮助制定手术干预规划和策略。

●术中指导:在手术过程中提供实时支持和指导。

同时,该综述也强调了与大语言模型在医疗中的应用相关的若干局限性:

●应答的准确性和质量:对大语言模型生成的信息的准确性以及生成有偏见或不正确应答的可能性的担忧。

●偏差:大语言模型的训练数据集中存在的一些固有偏差,可能导致有偏差的输出。

●可靠性和可信度:医务人员需要严格评估和验证大语言模型产生的输出。

大语言模型可通过在患者治疗的各个方面支持临床医生和外科医生来显著改善和优化医疗服务。然而,解决与准确性、偏差和可靠性相关的限制也至关重要。大语言模型应视为补充医务人员专业知识的工具,而非取代他们。未来的研究应侧重于提高大语言模型输出的准确性和可靠性,并探索如何将这些模型有效整合到临床和手术工作流中的方法。

总之,这篇系统综述强调了大语言模型在推进医疗实践中的重要性,为希望利用人工智能技术优化患者治疗的临床医生和外科医生提供了宝贵的资源。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3223691.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

突破传统,实时语音技术的革命。Livekit 开源代理框架来袭

🚀 突破传统,实时语音技术的革命!Livekit 开源代理框架来袭! 在数字化时代,实时通信已成为我们日常生活的一部分。但你是否曾想象过,一个能够轻松处理音视频流的代理框架,会如何改变我们的沟通方式?今天,我们就来一探究竟! 🌟 什么是 Livekit 代理框架? Live…

比赛获奖的武林秘籍:05 电子计算机类比赛国奖队伍技术如何分工和学习内容

比赛获奖的武林秘籍:05 电子计算机类比赛国奖队伍技术如何分工和学习内容 摘要 本文主要介绍了在电子计算机类比赛中技术层面上的团队分工和需要学习的内容,分为了嵌入式硬件、嵌入式软件、视觉图像处理、机械、上位机软件开发和数据分析等六个方向&am…

iPhone短信被拉黑了怎么恢复?4步快速移除黑名单

在日常使用iPhone的过程中,可能会因为误操作或其他原因将某些联系人拉入黑名单,导致无法接收他们发送的短信。那么,iPhone短信被拉黑了怎么恢复? 其实,只需要简单的4步操作,就能快速将联系人移出黑名单&am…

【Java 的四大引用详解】

首先分别介绍一下这几种引用 强引用: 只要能通过GC ROOT根对象引用链找到就不会被垃圾回收器回收,当所有的GC Root都不通过强引用引用该对象时,才能被垃圾回收器回收。 软引用(SoftReference): 当只有软引…

网站更新改版了

✅作者简介:大家好,我是Leo,热爱Java后端开发者,一个想要与大家共同进步的男人😉😉 🍎个人主页:Leo的博客 💞当前专栏:Leo杂谈 ✨特色专栏:MySQL学…

JVM原理(二四):JVM虚拟机锁优化

高效并发是从JDK 5升级到JDK 6后一项重要的改进项,HotSpot虛 拟机开发团队在这个版本上花费了大量的资源去实现各种锁优化技术,如适应性自旋( Adaptive Spinning)、锁消除( Lock Elimination)、锁膨胀(Lock Coarsening)、轻量级锁(Lightweight Locking)、…

Websocket 替代方案:如何使用 Firestore 监听实时事件

大家好,我是CodeQi! 一位热衷于技术分享的码仔。 ​在现代 Web 开发中,实时更新功能对于许多应用程序(如聊天应用、协作工具和在线游戏)都是必不可少的。虽然 WebSocket 是一种常用的实时通信技术,但 Google 的 Firestore 也提供了一种强大的替代方案,使得实时监听变得…

AdaBoost集成学习算法理论解读以及公式为什么这么设计?

本文致力于阐述AdaBoost基本步骤涉及的每一个公式和公式为什么这么设计。 AdaBoost集成学习算法基本上遵从Boosting集成学习思想,通过不断迭代更新训练样本集的样本权重分布获得一组性能互补的弱学习器,然后通过加权投票等方式将这些弱学习器集成起来得到…

解析MySQL的数据类型:理解每种类型及其应用

MySQL是一种流行的关系型数据库管理系统,被广泛应用于Web应用开发中。在数据库设计的过程中,选择合适的数据类型至关重要,因为它不仅影响存储效率和数据完整性,还影响数据库操作的性能和查询速度。本文将详细介绍MySQL支持的各种数…

飞跃边界,尽在掌握 —— Jump Desktop 8 for Mac,远程工作新体验!

Jump Desktop 8 for Mac 是一款强大的远程桌面控制软件,专为追求高效工作与生活平衡的用户设计。它允许您轻松地从Mac设备上远程访问和控制另一台电脑或服务器,无论是跨房间、跨城市还是跨国界,都能实现无缝连接,仿佛操作就在眼前…

【Python实战因果推断】28_倾向分8

目录 Treatment Is Easy to Model Treatment Is Easy to Model 第一个例子中,治疗分配的模型相当容易建立,但干预结果的模型却比较复杂。具体来说,干预遵循伯努利分布,其概率由以下倾向得分给出: 如果您没有意识到&a…

单对以太网:工业4.0时代的通信革命

单对以太网连接器概述 单对以太网(Single Pair Ethernet,简称SPE)是一种新兴的以太网技术,它通过一对双绞线实现数据传输,支持PoDL(Power over Data Line)技术,为终端设备提供电力供…

PTA - 编写函数计算圆面积

题目描述: 1.要求编写函数getCircleArea(r)计算给定半径r的圆面积,函数返回圆的面积。 2.要求编写函数get_rList(n) 输入n个值放入列表并将列表返回 函数接口定义: getCircleArea(r); get_rList(n); 传入的参数r表示圆的半径&#xff0c…

PTA - sdut-使用函数求a+aa+aaa++⋯+aa.....aaa(n个a)之和

题目描述: 给定两个均不超过9的正整数a和n,要求:编写函数fn(a,n), 求aaaaaa⋯aa⋯aa(n个a)之和,fn须返回的是数列之和。 函数接口定义: def fn(a,n):其中, a 和 n 都是传入的参数…

Java项目:基于SSM框架实现的农家乐信息管理平台含前后台【ssm+B/S架构+源码+数据库+答辩PPT+开题报告+毕业论文】

一、项目简介 本项目是一套基于SSM框架实现的农家乐信息管理平台 包含:项目源码、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试,eclipse或者idea 确保可以运行! 该系统功能完善、界面美观、操作简单、功…

linux信息收集与提权

目录 版本信息收集 kali得一些exp网站 kali自带的searchsploit工具 脏牛提权漏洞(改写没有写权限的文件) 测试靶场下载链接 sudo提权 上传恶意C脚本进行编译生成dirty的elf文件,也可以在攻击机编译好上传 启动,123456是设…

微信小程序毕业设计-教育培训系统项目开发实战(附源码+论文)

大家好!我是程序猿老A,感谢您阅读本文,欢迎一键三连哦。 💞当前专栏:微信小程序毕业设计 精彩专栏推荐👇🏻👇🏻👇🏻 🎀 Python毕业设计…

低资源低成本评估大型语言模型(LLMs)

随着新的大型语言模型(LLMs)的持续发展,从业者发现自己面临着众多选择,需要从数百个可用选项中选择出最适合其特定需求的模型、提示[40]或超参数。例如,Chatbot Arena基准测试平台积极维护着近100个模型,以…

WPF 初识依赖属性

依赖属性的意义和作用 核心模块内存共享,节省空间数据绑定、样式、模板、动画。。。。如果没有依赖属性,这个框架就是一个控件框架 相当于Winform 依赖属性的基本定义 基本过程:声明、注册、包装 在需要写依赖属性的类中,继承…