KMeans,KNN,Mean-shift算法的学习

1.KMeans算法是什么?

在没有标准标签的情况下,以空间的k个节点为中心进行聚类,对最靠近他们的对象进行归类。

2.KMeans公式:

2. 1.关键分为三个部分:
1.一开始会定义n个中心点,然后计算各数据点与中心点的距离dist(xi,ujt)
2. 判断数据点属于哪一类:主要看当前数据点离哪一个中心点的距离最近
3.所有数据点分类完后,需要
更新各个类的中心点
,然后不断重复1,2操作直至中心点不再变化
中心点更新=1/k(当前区域的节点数)*(当前区域节点xi之和)
在这里插入图片描述
2.2.KMeans均值聚类的图像展示:
在这里插入图片描述

3.KNN算法

3.1.KNN算法是什么?

**1.概念:**给定一共训练数据集,对输入的新的数据实例A,在数据集上寻找和A实例最邻近的K各实例(K个邻居),然后这K个实例的多数属于某个类,那么这个A实例就属于该这个类中;
2.认识: 因为新实例的数据的判别,和它的K个邻居关系很大,所以我们需要知道K个邻居的正确标签,因此KNN算法是一个监督式学习的算法;
在这里插入图片描述

3.2.例子:

在这里插入图片描述

4.均值漂移聚类算法(Mean-shift)

4.1是什么?

KMeans算法需要一开始定义n个类别(n个中心点),但是如果数据量越来越大,类别越来越多时KMeans已经无法满足当前需求了。而均值漂移算法是一个基于密度梯度上升的聚类算法(沿着密度梯度上升,从而寻找聚类中心点)
因此Mean-shift是一个无监督学习算法。

4.2公式:

1.计算均值偏移:M(x)偏移量=1/K*(当前中心点和其余数据点的距离之和)
2.中心点的更新:新的中心点=旧的中心点+M(x)偏移量
在这里插入图片描述

4.3 均值漂移算法的流程:

**KMeans算法:*一开始定义n个中心类,然后根据与中心类的距离进行数据点的归类,并重复以上操作直至中心点不再变化(中心点=1/K(xi之和));
**Mean-shift算法:*随机找一个点作为中心点A,并定义半径r,找出与A距离在r内的所有节点记为集合S——>计算偏移量中心节点的均值偏移量(1/K(u-xi)),不断移动中心点A直至收敛
在这里插入图片描述

5.KMeans算法实战:

1.概念: 本质是一个非监督学习的聚类算法,也就是说不需要提供标签,它会以空间K个中心点进行聚类,对最靠近他们的对象进行归类。
2.过程: 1.首先KM = KMeans(n_clusters=3, random_state=0)选择中心点个数——>2.然后根据各个数据datai中心点距离确定各个datai所属的类别——>3.不断更新聚类中心(1/K*(xi之和))【k为每个区域的节点个数,xi为该区域的节点】直至中心点不再变化

import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from sklearn.cluster import KMeans
from sklearn.metrics import accuracy_score# 1.读取数据进行预览
data = pd.read_csv('D:/pythonDATA/data.csv')
data.head()
# 2.定义X和y
X = data.drop(['labels'], axis=1)
y = data.loc[:, 'labels']
y.head()
pd.value_counts(y)  # 查看label类别数(0,1,2)
# 3.根据给定的正确的标签进行分类
fig1 = plt.figure()
label0 = plt.scatter(X.loc[:, 'V1'][y == 0], X.loc[:, 'V2'][y == 0])
label1 = plt.scatter(X.loc[:, 'V1'][y == 1], X.loc[:, 'V2'][y == 1])
label2 = plt.scatter(X.loc[:, 'V1'][y == 2], X.loc[:, 'V2'][y == 2])plt.title('labeled data')
plt.xlabel('V1')
plt.ylabel('V2')
plt.legend((label0, label1, label2), ('label0', 'label1', 'label2'))
# 4.建立Kmeans模型:需要指定中心节点数3个
KM = KMeans(n_clusters=3, random_state=0)
KM.fit(X)
# 5.输出中心节点信息,并画出中心点
centers = KM.cluster_centers_
print("中心点信息:")
print(centers)
plt.scatter(centers[:, 0], centers[:, 1])
plt.show()
y_predict = KM.predict(X)# 矫正结果
y_corrected = []
for i in y_predict:if i == 0:y_corrected.append(2)elif i == 1:y_corrected.append(1)else:y_corrected.append(0)
print(pd.value_counts(y_corrected), pd.value_counts(y))
# 预测模型
accuracy = accuracy_score(y, y_corrected)
print(accuracy)

在这里插入图片描述

6.KNN算法的实战

1.概念: 本质上是一个监督学习算法,数据需要提供正确的标签。
2.过程: 根据输入的数据实例寻找该实例最近的K个实例——>如果这K个实例的大多数属于A类,那么这个新输入的实例就属于A类
3.缺点: 1.需要指定K邻居数量,且需要给数据附上标签;2.没有中心节点

from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import silhouette_score
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt# 1. 读取数据进行预览
data = pd.read_csv('D:/pythonDATA/data.csv')
data.head()# 2. 定义X和y
X = data.drop(['labels'], axis=1)
y = data.loc[:, 'labels']# 3. 使用KNN算法进行聚类
k = 3  # 设定簇的数量
knn = KNeighborsClassifier(n_neighbors=k)
knn.fit(X, y)# 4. 预测每个样本所属的簇
y_predict = knn.predict(X)
y_predict = np.array(y_predict)
print(y_predict)# 5. 评估聚类结果
silhouette_avg = silhouette_score(X, y_predict)
print("Silhouette Score:", silhouette_avg)# 6. 画图(KNN不提供聚类中心,因此无法画出中心点)
label0 = plt.scatter(X.loc[:, 'V1'][y_predict == 0], X.loc[:, 'V2'][y_predict == 0])
label1 = plt.scatter(X.loc[:, 'V1'][y_predict == 1], X.loc[:, 'V2'][y_predict == 1])
label2 = plt.scatter(X.loc[:, 'V1'][y_predict == 2], X.loc[:, 'V2'][y_predict == 2])
plt.legend((label0, label1, label2), ('label0', 'label1', 'label2'))
plt.title("KNN Clustering")
plt.xlabel('V1')
plt.ylabel('V2')
plt.show()
y_predict_test = knn.predict([[80, 60]])
print(y_predict_test)

在这里插入图片描述

7.MeanShift算法的实战:

1.概念: 与KMeans算法一样是一个非监督学习算法,无需提供数据标签,也无需像KMeans算法一样提前定义中心节点的个数。
2.过程: 首先随机选一个没有分类的点作为中心点**(初始化)——>然后找出中心点A距离在r内的所有点,记为集合S (生成集合)——>再然后就是计算中心点A到集合S内每个元素的偏移量M(x) (确定方向)——>不断进行节点的更新并聚合直到所有的点都不再移动或者移动的距离小于一个设定的阈值(生成聚类)**
3.公式: 1.计算均值偏移:M(x)=1/K*(当前中心点和其余数据的距离差之和) ——>2.中心点的更新:新的中心点=旧的中心点+M(x) 偏移量
在这里插入图片描述

from sklearn.cluster import MeanShift, estimate_bandwidth
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from sklearn.metrics import silhouette_score# 1.读取数据进行预览
data = pd.read_csv('D:/pythonDATA/data.csv')
data.head()# 2.定义X
X = data.drop(['labels'], axis=1)
y = data.loc[:, 'labels']# 3.使用MeanShift算法进行聚类
bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500)
meanshift = MeanShift(bandwidth=bandwidth)
meanshift.fit(X)# 4.输出聚类中心信息
centers = meanshift.cluster_centers_
print("中心点信息:")
print(centers)# 5.预测每个样本所属的簇
y_predict = meanshift.predict(X)
silhouette_avg = silhouette_score(X, y_predict)  
print("Silhouette Score:", silhouette_avg)# 6.画图
plt.scatter(X.iloc[:, 0], X.iloc[:, 1], c=y_predict)
plt.scatter(centers[:, 0], centers[:, 1], marker='x', color='red')
plt.title("MeanShift Clustering")
plt.xlabel('V1')
plt.ylabel('V2')
plt.show()

在这里插入图片描述

8.silhouette_score轮廓系数对于聚类的评分

  1. 是什么: **轮廓系数(Silhouette Score)**是一种用于评估聚类效果的指标,它考虑了聚类的紧密度和分离度。其计算方法如下:

  2. 对于每个样本i,计算与同簇中所有其他样本的平均距离,记作ai。ai越(优),表示样本i越应该被分到该簇。

  3. 对于样本i,计算它与其他任意簇所有样本的平均距离,取最小值,记作bi。bi越(优),表示样本i越不应该被分到其他簇。

  4. 轮廓系数Si定义为:Si = (bi - ai) / max(ai, bi)

对所有样本的轮廓系数取平均值,得到整个数据集的平均轮廓系数。

轮廓系数的取值范围在[-1, 1]之间,其中:

  1. 如果Si接近于1,则表示样本i聚类合理,距离相近的样本分在同一个簇,且簇与其他簇有很好的分离度。
  2. 如果Si接近于-1,则表示样本i更适合分到其他簇,当前的聚类结果可能不合理。
  3. 如果Si接近于0,则表示样本i位于两个簇的边界附近。
    所以,轮廓系数越大越好,表示聚类效果越好。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3029727.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

企业活动想联系媒体报道宣传如何联系媒体?

在企业的宣传推广工作中,我曾经历过一段费事费力、效率极低的时期。那时,每当公司有重要活动或新项目需要媒体报道时,我便要一家家地联系媒体,发送邮件、打电话,甚至亲自登门拜访,只为求得一篇报道。然而,这样的过程充满了不确定性和挑战,时常让我感到焦虑和压力山大。 记得有一…

在CentOS 7服务器及Windows 10客户端间建立并配置NFS服务

在CentOS 7服务器及Windows 10客户端间建立并配置NFS服务 引言 网络文件系统(Network File System),简称NFS,是一种分布式文件系统协议。它允许网络上的客户端机器像访问本地磁盘文件一样,通过网络访问服务器上的文件。在某些特定的业务场景中…

鸿蒙内核源码分析(文件句柄篇) | 你为什么叫句柄

句柄 | handle int open(const char* pathname,int flags); ssize_t read(int fd, void *buf, size_t count); ssize_t write(int fd, const void *buf, size_t count); int close(int fd);只要写过应用程序代码操作过文件不会陌生这几个函数,文件操作的几个关键步骤嘛,跟把大…

202466读书笔记|《一天一首古诗词》——借问梅花何处落,风吹一夜满关山

202466读书笔记|《一天一首古诗词》——借问梅花何处落,风吹一夜满关山 上册下册 《一天一首古诗词》作者李锡琴,蛮早前加入书架的已购买书籍,这次刚好有点时间,利用起来读完。 赏析没有细看,只读了诗词部分&#xff0…

上海AI Lab开源首个可替代GPT-4V的多模态大模型

与开源和闭源模型相比,InternVL 1.5 在 OCR、多模态、数学和多轮对话等 18 个基准测试中的 8 个中取得了最先进的结果。 上海AI Lab 推出的 InternVL 1.5 是一款开源的多模态大语言模型 (MLLM),旨在弥合开源模型和专有商业模型在多模态理解方面的能力差距…

药物代谢动力学学习笔记

一、基本概念 二、经典房室模型 三、非线性药物代谢动力学 四、非房室模型 五、药代动力学与药效动力学 六、生物等效性评价 七、生物样品分析方法 基本概念 生物样品:生物机体的全血、血浆、血清、粪便、尿液或其他组织的样品 特异性,specificity&…

ntfs文件系统的优势 NTFS文件系统的特性有哪些 ntfs和fat32有什么区别 苹果电脑怎么管理硬盘

对于数码科技宅在新购得磁盘之后,出于某种原因会在新的磁盘安装操作系统。在安装操作系统时,首先要对磁盘进行分区和格式化,而在此过程中,操作者们需要选择文件系统。文件系统也决定了之后操作的流程程度,一般文件系统…

鸿蒙内核源码分析(VFS篇) | 文件系统和谐共处的基础

基本概念 | 官方定义 VFS(Virtual File System)是文件系统的虚拟层,它不是一个实际的文件系统,而是一个异构文件系统之上的软件粘合层,为用户提供统一的类Unix文件操作接口。由于不同类型的文件系统接口不统一&#x…

Spark Streaming笔记总结(保姆级)

万字长文警告!!! 目录 一、离线计算与流式计算 1.1 离线计算 1.1.1 离线计算的特点 1.1.2 离线计算的应用场景 1.1.3 离线计算代表技术 1.2 流式计算 1.2.1 流式计算的特点 1.2.2 流式计算的应用场景 1.2.3 流式计算的代表技术 二…

Photoshop中选区工具的应用

Photoshop中选区工具的应用 前言Photoshop中选区工具的基本操作创建选区的工具及方法选择、取消、隐藏选区选区的增加、减少选区的应用变换扩大选取与选取相似 Photoshop中采用快速选择工具来创建选区Photoshop中采用色彩范围命令来创建选区Photoshop中采用快速蒙版来创建选区P…

【算法基础实验】排序-最小优先队列MinPQ

优先队列 理论知识 MinPQ(最小优先队列)是一种常见的数据结构,用于有效管理一组元素,其中最小元素可以快速被检索和删除。这种数据结构广泛应用于各种算法中,包括图算法(如 Dijkstra 的最短路径算法和 Pr…

【雅思写作】刘洪波——《最简化雅思写作2.0》笔记——【1. 概述篇】第一章:一些预备知识、第二章:谁对中国考生的写作低分负责

文章目录 第一章 一些预备知识考试类型大作文议论文(Argumentation 80%)报告(Report 20%)评分标准写作流程其他格式缩写数字标点符号英式和美式拼写I, My, We, You的使用范文背诵反模板时代机经与预测 第二章 谁对中国考生的写作低…

车载电子电器架构 —— 应用软件开发(中)

车载电子电器架构 —— 应用软件开发(中) 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明…

二、SPI协议

文章目录 总述1.SPI接口2. SPI工作模式3. SPI通信时序4. SPI协议 对比 UART协议(上一篇文章刚介绍过uart协议,这里来对比一下) 总述 SPI(Serial Peripheral Interface)是一种高速的、全双工、同步的串行通信总线&…

详解分布式锁

知识点: 单体锁存在的问题: 单体锁,即单体应用中的锁,通过加单体锁(synchronized或RentranLock)可以保证单个实例并发安全 单体锁是JVM层面的锁,只能保证单个实例上的并发访问安全 如果将单…

基于springboot实现疾病防控综合系统项目【项目源码+论文说明】

基于springboot实现疾病防控综合系统演示 摘要 在如今社会上,关于信息上面的处理,没有任何一个企业或者个人会忽视,如何让信息急速传递,并且归档储存查询,采用之前的纸张记录模式已经不符合当前使用要求了。所以&…

浅谈云计算资源和服务

目录 前言 正文 专有名词及其首字母缩写 轻量级应用服务器 云服务器ECS 专有网络VPC 其他类服务 尾声 🔭 Hi,I’m Pleasure1234🌱 I’m currently learning Vue.js,SpringBoot,Computer Security and so on.👯 I’m studying in University o…

如何在您的WordPress网站上安装和设置W3 Total Cache

本周有一个客户,购买Hostease的虚拟主机,询问我们的在线客服,如何在您的WordPress网站上安装和设置W3 Total Cache?我们为用户提供相关教程,用户很快解决了遇到的问题。在此,我们分享这个操作教程&#xff…

Agent AI智能体的未来:无限可能

文章目录 终结者智能体正反影响自我意识开放心态 终结者 还记得那场人类与天网之间的史诗般的战斗吗?-- 《终结者》系列电影。 《终结者》系列电影是一部标志性的科幻动作系列,以紧张刺激的情节、令人难忘的角色和开创性的视觉效果而闻名。 电影探讨了…

【智能优化算法】矮猫鼬优化算法(Dwarf Mongoose Optimization Algorithm,DMHO)

矮猫鼬优化算法(Dwarf Mongoose Optimization Algorithm,DMHO)是期刊“COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING”(IF 7.3)的2022年智能优化算法 01.引言 矮猫鼬优化算法(Dwarf Mongoose Optimization Algorithm,DMHO)模仿矮猫鼬的觅食行…