鸿蒙内核源码分析(文件句柄篇) | 你为什么叫句柄

句柄 | handle

int open(const char* pathname,int flags);
ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);
int close(int fd);

只要写过应用程序代码操作过文件不会陌生这几个函数,文件操作的几个关键步骤嘛,跟把大象装冰箱分几步一样.先得把冰箱门打开,再把大象放进去,再关上冰箱门.其中最重要的一个参数就是fd,应用程序所有对文件的操作都基于它.fd可称为文件描述符,或者叫文件句柄(handle),个人更愿意称后者. 因为更形象,handle英文有手柄的意思,跟开门一样,握住手柄才能开门,手柄是进门关门的抓手.映射到文件系统,fd是应用层出入内核层的抓手.句柄是一个数字编号, open | creat去申请这个编号,内核会创建文件相关的一系列对象,返回编号,后续通过编号就可以操作这些对象.原理就是这么的简单,本篇将从fd入手,跟踪文件操作的整个过程.

请记住,鸿蒙内核中,在不同的层面会有两种文件句柄:

  • 系统文件句柄(sysfd),由内核统一管理,和进程文件句柄形成映射关系,一个sysfd可以被多个profd映射,也就是说打开一个文件只会占用一个sysfd,但可以占用多个profd,即一个文件被多个进程打开.
  • 进程文件句柄(profd),由进程管理的叫进程文件句柄,内核对不同进程中的fd进行隔离,即进程只能访问本进程的fd.举例说明之间的关系:
    文件            sysfd     profd吃个桃桃.mp4        10    13(A进程)吃个桃桃.mp4        10    3(B进程)容嬷嬷被冤枉.txt    12    3(A进程)容嬷嬷被冤枉.txt    12    3(C进程)

进程文件句柄

在鸿蒙一个进程默认最多可以有256fd,即最多可打开256个文件.文件也是资源的一种,系列篇多次说过进程是管理资源的,所以在进程控制块中能看到文件的影子files_structfiles_struct可理解为进程的文件管理器,里面只放和本进程相关的文件,线程则共享这些文件.另外子进程也会拷贝一份父进程的files_struct到自己的files_struct上,在父子进程篇中也讲过fork的本质就是拷贝资源,其中就包括了文件内容.

//进程控制块
typedef struct ProcessCB {//..#ifdef LOSCFG_FS_VFSstruct files_struct *files;        /**< Files held by the process */ //进程所持有的所有文件,注者称之为进程的文件管理器#endif	//每个进程都有属于自己的文件管理器,记录对文件的操作. 注意:一个文件可以被多个进程操作
} LosProcessCB;
struct files_struct {//进程文件表结构体int count;				//持有的文件数量struct fd_table_s *fdt; //持有的文件表unsigned int file_lock;	//文件互斥锁unsigned int next_fd;	//下一个fd
#ifdef VFS_USING_WORKDIRspinlock_t workdir_lock;	//工作区目录自旋锁char workdir[PATH_MAX];		//工作区路径,最大 256个字符
#endif
};

fd_table_sfiles_struct的成员,负责记录所有进程文件句柄的信息,个人觉得鸿蒙这块的实现有点乱,没有封装好.

struct fd_table_s {//进程fd表结构体unsigned int max_fds;//进程的文件描述符最多有256个struct file_table_s *ft_fds; /* process fd array associate with system fd *///系统分配给进程的FD数组 ,fd 默认是 -1fd_set *proc_fds;	//进程fd管理位,用bitmap管理FD使用情况,默认打开了 0,1,2	       (stdin,stdout,stderr)fd_set *cloexec_fds;sem_t ft_sem; /* manage access to the file table */ //管理对文件表的访问的信号量
};

file_table_s 记录进程fd和系统fd之间的绑定或者说映射关系

struct file_table_s {//进程fd <--> 系统fd绑定intptr_t sysFd; /* system fd associate with the tg_filelist index */
};

fd_set实现了进程fd按位图管理,系列操作为 FD_SET,FD_ISSET,FD_CLR,FD_ZERO
除以8是因为 char类型占8bit位.请尝试去理解下按位操作的具体实现.

typedef struct fd_set
{unsigned char fd_bits [(FD_SETSIZE+7)/8];
} fd_set;
#define FD_SET(n, p)  FDSETSAFESET(n, (p)->fd_bits[((n)-LWIP_SOCKET_OFFSET)/8] = (u8_t)((p)->fd_bits[((n)-LWIP_SOCKET_OFFSET)/8] |  (1 << (((n)-LWIP_SOCKET_OFFSET) & 7))))
#define FD_CLR(n, p)  FDSETSAFESET(n, (p)->fd_bits[((n)-LWIP_SOCKET_OFFSET)/8] = (u8_t)((p)->fd_bits[((n)-LWIP_SOCKET_OFFSET)/8] & ~(1 << (((n)-LWIP_SOCKET_OFFSET) & 7))))
#define FD_ISSET(n,p) FDSETSAFEGET(n, (p)->fd_bits[((n)-LWIP_SOCKET_OFFSET)/8] &   (1 << (((n)-LWIP_SOCKET_OFFSET) & 7)))
#define FD_ZERO(p)    memset((void*)(p), 0, sizeof(*(p)))

vfs_procfd.c 为进程文件句柄实现文件,每个进程的 0,1,2 号 fd是由系统占用并不参与分配,即为大家熟知的:

  • STDIN_FILENO(fd = 0) 标准输入 接收键盘的输入
  • STDOUT_FILENO(fd = 1) 标准输出 向屏幕输出
  • STDERR_FILENO(fd = 2) 标准错误 向屏幕输出
/* minFd should be a positive number,and 0,1,2 had be distributed to stdin,stdout,stderr */if (minFd < MIN_START_FD) {minFd = MIN_START_FD;}
//分配进程文件句柄
static int AssignProcessFd(const struct fd_table_s *fdt, int minFd)
{if (fdt == NULL) {return VFS_ERROR;}if (minFd >= fdt->max_fds) {set_errno(EINVAL);return VFS_ERROR;}//从表中搜索未使用的 fd/* search unused fd from table */for (int i = minFd; i < fdt->max_fds; i++) {if (!FD_ISSET(i, fdt->proc_fds)) {return i;}}set_errno(EMFILE);return VFS_ERROR;
}
//释放进程文件句柄
void FreeProcessFd(int procFd)
{struct fd_table_s *fdt = GetFdTable();if (!IsValidProcessFd(fdt, procFd)) {return;}FileTableLock(fdt);FD_CLR(procFd, fdt->proc_fds);	//相应位清0FD_CLR(procFd, fdt->cloexec_fds);fdt->ft_fds[procFd].sysFd = -1;	//解绑系统文件描述符FileTableUnLock(fdt);
}
  • 分配和释放的算法很简单,由位图的相关操作完成.
  • fdt->ft_fds[i].sysFd中的i代表进程的fd,-1代表没有和系统文件句柄绑定.
  • 进程文件句柄和系统文件句柄的意义和关系在 (VFS篇)中已有说明,此处不再赘述,请自行前往翻看.

系统文件句柄

系统文件句柄的实现类似,但它并不在鸿蒙内核项目中,而是在NuttX项目的 fs_files.c 中, 因鸿蒙内核项目中使用了其他第三方的项目,所以需要加进来一起研究才能看明白鸿蒙整个内核的完整实现.具体涉及的子系统仓库如下:

  • 子系统注解仓库

在给鸿蒙内核源码加注过程中发现仅仅注解内核仓库还不够,因为它关联了其他子系统,若对这些子系统不了解是很难完整的注解鸿蒙内核,所以也对这些关联仓库进行了部分注解,这些仓库包括:

  • 同样由位图来管理系统文件句柄,具体相关操作如下
//用 bitmap 数组来记录文件描述符的分配情况,一位代表一个SYS FD
static unsigned int bitmap[CONFIG_NFILE_DESCRIPTORS / 32 + 1] = {0};
//设置指定位值为 1
static void set_bit(int i, void *addr)
{unsigned int tem = (unsigned int)i >> 5; /* Get the bitmap subscript */unsigned int *addri = (unsigned int *)addr + tem;unsigned int old = *addri;old = old | (1UL << ((unsigned int)i & 0x1f)); /* set the new map bit */*addri = old;
}
//获取指定位,看是否已经被分配
bool get_bit(int i)
{unsigned int *p = NULL;unsigned int mask;p = ((unsigned int *)bitmap) + (i >> 5); /* Gets the location in the bitmap */mask = 1 << (i & 0x1f); /* Gets the mask for the current bit int bitmap */if (!(~(*p) & mask)){return true;}return false;
}
  • tg_filelist是全局系统文件列表,统一管理系统fd,其中的关键结构体是 file,这才是内核对文件对象描述的实体,是本篇最重要的内容.
    #if CONFIG_NFILE_DESCRIPTORS > 0struct filelist tg_filelist; //全局统一管理系统文件句柄#endifstruct filelist{sem_t   fl_sem;               /* Manage access to the file list */struct file fl_files[CONFIG_NFILE_DESCRIPTORS];};struct file{unsigned int         f_magicnum;  /* file magic number */int                  f_oflags;    /* Open mode flags */struct Vnode         *f_vnode;    /* Driver interface */loff_t               f_pos;       /* File position */unsigned long        f_refcount;  /* reference count */char                 *f_path;     /* File fullpath */void                 *f_priv;     /* Per file driver private data */const char           *f_relpath;  /* realpath */struct page_mapping  *f_mapping;  /* mapping file to memory */void                 *f_dir;      /* DIR struct for iterate the directory if open a directory */const struct file_operations_vfs *ops;int fd;};
*   `f_magicnum`魔法数字,每种文件格式不同魔法数字不同,`gif`是`47 49 46 38`,`png`是`89 50 4e 47`
*   `f_oflags` 操作文件的权限模式,读/写/执行
*   `f_vnode` 对应的`vnode`
*   `f_pos` 记录操作文件的当前位置
*   `f_refcount` 文件被引用的次数,即文件被所有进程打开的次数.
*   `f_priv` 文件的私有数据
*   `f_relpath` 记录文件的真实路径
*   `f_mapping` 记录文件和内存的映射关系,这个在文件映射篇中有详细介绍.
*   `ops` 对文件内容的操作函数
*   `fd` 文件句柄编号,系统文件句柄是唯一的,一直到申请完为止,当`f_refcount`为0时,内核将回收`fd`.

open | creat | 申请文件句柄

通过文件路径名pathname获取文件句柄,鸿蒙实现过程如下

SysOpen //系统调用AllocProcessFd  //分配进程文件句柄do_open //向底层打开文件fp_open //vnode 层操作files_allocatefilep->ops->open(filep) //调用各文件系统的函数指针AssociateSystemFd //绑定系统文件句柄

建一个file对象,i即为分配到的系统文件句柄.

//创建系统文件对象及分配句柄
int files_allocate(struct Vnode *vnode_ptr, int oflags, off_t pos, void *priv, int minfd)//...while (i < CONFIG_NFILE_DESCRIPTORS)//系统描述符{p = ((unsigned int *)bitmap) + (i >> 5); /* Gets the location in the bitmap */mask = 1 << (i & 0x1f); /* Gets the mask for the current bit int bitmap */if ((~(*p) & mask))//该位可用于分配{set_bit(i, bitmap);//占用该位list->fl_files[i].f_oflags   = oflags;list->fl_files[i].f_pos      = pos;//偏移位list->fl_files[i].f_vnode    = vnode_ptr;//vnodelist->fl_files[i].f_priv     = priv;//私有数据list->fl_files[i].f_refcount = 1;	//引用数默认为1list->fl_files[i].f_mapping  = NULL;//暂无映射list->fl_files[i].f_dir      = NULL;//暂无目录list->fl_files[i].f_magicnum = files_magic_generate();//魔法数字process_files = OsCurrProcessGet()->files;//获取当前进程文件管理器return (int)i;}i++;}// ...
}

read | write

SysRead   //系统调用|读文件:从文件中读取nbytes长度的内容到buf中(用户空间)fd = GetAssociatedSystemFd(fd); //通过进程fd获取系统fdread(fd, buf, nbytes);  //调用系统fd层的读函数fs_getfilep(fd, &filep);  //通过系统fd获取file对象file_read(filep, buf, nbytes) //调用file层的读文件ret = (int)filep->ops->read(filep, (char *)buf, (size_t)nbytes);//调用具体文件系统的读操作

SysWrite   //系统调用|写文件:将buf中(用户空间)nbytes长度的内容写到文件中fd = GetAssociatedSystemFd(fd); //通过进程fd获取系统fdwrite(sysfd, buf, nbytes);  //调用系统fd层的写函数fs_getfilep(fd, &filep);  //通过系统fd获取file对象file_seek64file_write(filep, buf, nbytes);//调用file层的写文件ret = filep->ops->write(filep, (const char *)buf, nbytes);//调用具体文件系统的写操作

此处仅给出 file_write 的实现

ssize_t file_write(struct file *filep, const void *buf, size_t nbytes)
{int ret;int err;if (buf == NULL){err = EFAULT;goto errout;}/* Was this file opened for write access? */if ((((unsigned int)(filep->f_oflags)) & O_ACCMODE) == O_RDONLY){err = EACCES;goto errout;}/* Is a driver registered? Does it support the write method? */if (!filep->ops || !filep->ops->write){err = EBADF;goto errout;}/* Yes, then let the driver perform the write */ret = filep->ops->write(filep, (const char *)buf, nbytes);if (ret < 0){err = -ret;goto errout;}return ret;errout:set_errno(err);return VFS_ERROR;
}      

close

//关闭文件句柄
int SysClose(int fd)
{int ret;/* Process fd convert to system global fd */int sysfd = DisassociateProcessFd(fd);//先解除关联ret = close(sysfd);//关闭文件,个人认为应该先 close - > DisassociateProcessFd if (ret < 0) {//关闭失败时AssociateSystemFd(fd, sysfd);//继续关联return -get_errno();}FreeProcessFd(fd);//释放进程fdreturn ret;
}
  • 解除进程fd和系统fd的绑定关系
  • close时会有个判断,这个文件的引用数是否为0,只有为0才会真正的执行_files_close
    int files_close_internal(int fd, LosProcessCB *processCB){//...list->fl_files[fd].f_refcount--;if (list->fl_files[fd].f_refcount == 0){#ifdef LOSCFG_KERNEL_VMdec_mapping_nolock(filep->f_mapping);#endifret = _files_close(&list->fl_files[fd]);if (ret == OK){clear_bit(fd, bitmap);}}// ... }static int _files_close(struct file *filep){struct Vnode *vnode = filep->f_vnode;int ret = OK;/* Check if the struct file is open (i.e., assigned an vnode) */if (filep->f_oflags & O_DIRECTORY){ret = closedir(filep->f_dir);if (ret != OK){return ret;}}else{/* Close the file, driver, or mountpoint. */if (filep->ops && filep->ops->close){/* Perform the close operation */ret = filep->ops->close(filep);if (ret != OK){return ret;}}VnodeHold();vnode->useCount--;/* Block char device is removed when close */if (vnode->type == VNODE_TYPE_BCHR){ret = VnodeFree(vnode);if (ret < 0){PRINTK("Removing bchar device %s failed\n", filep->f_path);}}VnodeDrop();}/* Release the path of file */free(filep->f_path);/* Release the file descriptor */filep->f_magicnum = 0;filep->f_oflags   = 0;filep->f_pos      = 0;filep->f_path     = NULL;filep->f_priv     = NULL;filep->f_vnode    = NULL;filep->f_refcount = 0;filep->f_mapping  = NULL;filep->f_dir      = NULL;return ret;}    
  • 最后FreeProcessFd负责释放该文件在进程层面占用的资源

鸿蒙全栈开发全新学习指南

也为了积极培养鸿蒙生态人才,让大家都能学习到鸿蒙开发最新的技术,针对一些在职人员、0基础小白、应届生/计算机专业、鸿蒙爱好者等人群,整理了一套纯血版鸿蒙(HarmonyOS Next)全栈开发技术的学习路线【包含了大厂APP实战项目开发】

本路线共分为四个阶段:

第一阶段:鸿蒙初中级开发必备技能

第二阶段:鸿蒙南北双向高工技能基础:gitee.com/MNxiaona/733GH

第三阶段:应用开发中高级就业技术

第四阶段:全网首发-工业级南向设备开发就业技术:https://gitee.com/MNxiaona/733GH

《鸿蒙 (Harmony OS)开发学习手册》(共计892页)

如何快速入门?

1.基本概念
2.构建第一个ArkTS应用
3.……

开发基础知识:gitee.com/MNxiaona/733GH

1.应用基础知识
2.配置文件
3.应用数据管理
4.应用安全管理
5.应用隐私保护
6.三方应用调用管控机制
7.资源分类与访问
8.学习ArkTS语言
9.……

基于ArkTS 开发

1.Ability开发
2.UI开发
3.公共事件与通知
4.窗口管理
5.媒体
6.安全
7.网络与链接
8.电话服务
9.数据管理
10.后台任务(Background Task)管理
11.设备管理
12.设备使用信息统计
13.DFX
14.国际化开发
15.折叠屏系列
16.……

鸿蒙开发面试真题(含参考答案):gitee.com/MNxiaona/733GH

鸿蒙入门教学视频:

美团APP实战开发教学:gitee.com/MNxiaona/733GH

写在最后

  • 如果你觉得这篇内容对你还蛮有帮助,我想邀请你帮我三个小忙:
  • 点赞,转发,有你们的 『点赞和评论』,才是我创造的动力。
  • 关注小编,同时可以期待后续文章ing🚀,不定期分享原创知识。
  • 想要获取更多完整鸿蒙最新学习资源,请移步前往小编:gitee.com/MNxiaona/733GH

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://xiahunao.cn/news/3029724.html

如若内容造成侵权/违法违规/事实不符,请联系瞎胡闹网进行投诉反馈,一经查实,立即删除!

相关文章

202466读书笔记|《一天一首古诗词》——借问梅花何处落,风吹一夜满关山

202466读书笔记|《一天一首古诗词》——借问梅花何处落&#xff0c;风吹一夜满关山 上册下册 《一天一首古诗词》作者李锡琴&#xff0c;蛮早前加入书架的已购买书籍&#xff0c;这次刚好有点时间&#xff0c;利用起来读完。 赏析没有细看&#xff0c;只读了诗词部分&#xff0…

上海AI Lab开源首个可替代GPT-4V的多模态大模型

与开源和闭源模型相比&#xff0c;InternVL 1.5 在 OCR、多模态、数学和多轮对话等 18 个基准测试中的 8 个中取得了最先进的结果。 上海AI Lab 推出的 InternVL 1.5 是一款开源的多模态大语言模型 (MLLM)&#xff0c;旨在弥合开源模型和专有商业模型在多模态理解方面的能力差距…

药物代谢动力学学习笔记

一、基本概念 二、经典房室模型 三、非线性药物代谢动力学 四、非房室模型 五、药代动力学与药效动力学 六、生物等效性评价 七、生物样品分析方法 基本概念 生物样品&#xff1a;生物机体的全血、血浆、血清、粪便、尿液或其他组织的样品 特异性&#xff0c;specificity&…

ntfs文件系统的优势 NTFS文件系统的特性有哪些 ntfs和fat32有什么区别 苹果电脑怎么管理硬盘

对于数码科技宅在新购得磁盘之后&#xff0c;出于某种原因会在新的磁盘安装操作系统。在安装操作系统时&#xff0c;首先要对磁盘进行分区和格式化&#xff0c;而在此过程中&#xff0c;操作者们需要选择文件系统。文件系统也决定了之后操作的流程程度&#xff0c;一般文件系统…

鸿蒙内核源码分析(VFS篇) | 文件系统和谐共处的基础

基本概念 | 官方定义 VFS&#xff08;Virtual File System&#xff09;是文件系统的虚拟层&#xff0c;它不是一个实际的文件系统&#xff0c;而是一个异构文件系统之上的软件粘合层&#xff0c;为用户提供统一的类Unix文件操作接口。由于不同类型的文件系统接口不统一&#x…

Spark Streaming笔记总结(保姆级)

万字长文警告&#xff01;&#xff01;&#xff01; 目录 一、离线计算与流式计算 1.1 离线计算 1.1.1 离线计算的特点 1.1.2 离线计算的应用场景 1.1.3 离线计算代表技术 1.2 流式计算 1.2.1 流式计算的特点 1.2.2 流式计算的应用场景 1.2.3 流式计算的代表技术 二…

Photoshop中选区工具的应用

Photoshop中选区工具的应用 前言Photoshop中选区工具的基本操作创建选区的工具及方法选择、取消、隐藏选区选区的增加、减少选区的应用变换扩大选取与选取相似 Photoshop中采用快速选择工具来创建选区Photoshop中采用色彩范围命令来创建选区Photoshop中采用快速蒙版来创建选区P…

【算法基础实验】排序-最小优先队列MinPQ

优先队列 理论知识 MinPQ&#xff08;最小优先队列&#xff09;是一种常见的数据结构&#xff0c;用于有效管理一组元素&#xff0c;其中最小元素可以快速被检索和删除。这种数据结构广泛应用于各种算法中&#xff0c;包括图算法&#xff08;如 Dijkstra 的最短路径算法和 Pr…

【雅思写作】刘洪波——《最简化雅思写作2.0》笔记——【1. 概述篇】第一章:一些预备知识、第二章:谁对中国考生的写作低分负责

文章目录 第一章 一些预备知识考试类型大作文议论文&#xff08;Argumentation 80%&#xff09;报告&#xff08;Report 20%&#xff09;评分标准写作流程其他格式缩写数字标点符号英式和美式拼写I, My, We, You的使用范文背诵反模板时代机经与预测 第二章 谁对中国考生的写作低…

车载电子电器架构 —— 应用软件开发(中)

车载电子电器架构 —— 应用软件开发(中) 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明…

二、SPI协议

文章目录 总述1.SPI接口2. SPI工作模式3. SPI通信时序4. SPI协议 对比 UART协议&#xff08;上一篇文章刚介绍过uart协议&#xff0c;这里来对比一下&#xff09; 总述 SPI&#xff08;Serial Peripheral Interface&#xff09;是一种高速的、全双工、同步的串行通信总线&…

详解分布式锁

知识点&#xff1a; 单体锁存在的问题&#xff1a; 单体锁&#xff0c;即单体应用中的锁&#xff0c;通过加单体锁&#xff08;synchronized或RentranLock&#xff09;可以保证单个实例并发安全 单体锁是JVM层面的锁&#xff0c;只能保证单个实例上的并发访问安全 如果将单…

基于springboot实现疾病防控综合系统项目【项目源码+论文说明】

基于springboot实现疾病防控综合系统演示 摘要 在如今社会上&#xff0c;关于信息上面的处理&#xff0c;没有任何一个企业或者个人会忽视&#xff0c;如何让信息急速传递&#xff0c;并且归档储存查询&#xff0c;采用之前的纸张记录模式已经不符合当前使用要求了。所以&…

浅谈云计算资源和服务

目录 前言 正文 专有名词及其首字母缩写 轻量级应用服务器 云服务器ECS 专有网络VPC 其他类服务 尾声 &#x1f52d; Hi,I’m Pleasure1234&#x1f331; I’m currently learning Vue.js,SpringBoot,Computer Security and so on.&#x1f46f; I’m studying in University o…

如何在您的WordPress网站上安装和设置W3 Total Cache

本周有一个客户&#xff0c;购买Hostease的虚拟主机&#xff0c;询问我们的在线客服&#xff0c;如何在您的WordPress网站上安装和设置W3 Total Cache&#xff1f;我们为用户提供相关教程&#xff0c;用户很快解决了遇到的问题。在此&#xff0c;我们分享这个操作教程&#xff…

Agent AI智能体的未来:无限可能

文章目录 终结者智能体正反影响自我意识开放心态 终结者 还记得那场人类与天网之间的史诗般的战斗吗&#xff1f;-- 《终结者》系列电影。 《终结者》系列电影是一部标志性的科幻动作系列&#xff0c;以紧张刺激的情节、令人难忘的角色和开创性的视觉效果而闻名。 电影探讨了…

【智能优化算法】矮猫鼬优化算法(Dwarf Mongoose Optimization Algorithm,DMHO)

矮猫鼬优化算法(Dwarf Mongoose Optimization Algorithm,DMHO)是期刊“COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING”&#xff08;IF 7.3&#xff09;的2022年智能优化算法 01.引言 矮猫鼬优化算法(Dwarf Mongoose Optimization Algorithm,DMHO)模仿矮猫鼬的觅食行…

天府锋巢直播产业基地构建成都电商直播高地

天府锋巢直播产业基地自成立以来&#xff0c;一直秉承着创新、协同、共赢的发展理念&#xff0c;吸引了众多直播企业纷纷入驻。随着直播产业的迅猛发展&#xff0c;改成都直播基地内的配套服务也显得尤为重要。本文将深入探讨入驻天府锋巢直播产业基地后&#xff0c;配套的直播…

找不到msvcp140.dll无法执行代码的原因分析及修复方法

当用户在尝试运行某些应用程序或游戏时&#xff0c;可能会遇到系统弹出错误提示&#xff0c;显示“找不到msvcp140.dll无法执行代码”这一错误信息&#xff0c;它会导致程序无法正常启动。为了解决这个问题&#xff0c;我经过多次尝试和总结&#xff0c;找到了以下五种解决方法…

第十三届蓝桥杯决赛(国赛)真题 Java C 组【原卷】

文章目录 发现宝藏试题 A: 斐波那契与 7试题 B: 小蓝做实验试题 C: 取模试题 D: 内存空间试题 E \mathrm{E} E : 斐波那契数组试题 F: 最大公约数试题 G: 交通信号试题 I: 打折试题 J: 宝石收集 发现宝藏 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#x…